<put algortithm description here>
Input Image List
[multipleinput: rasters]Input Vector Data List
[multipleinput: any vectors]Input XML image statistics file
[file]Optional.
<put parameter description here>
Default elevation
[number]<put parameter description here>
Default: 0
Maximum training sample size per class
[number]<put parameter description here>
Default: 1000
Maximum validation sample size per class
[number]<put parameter description here>
Default: 1000
On edge pixel inclusion
[boolean]<put parameter description here>
Default: True
Training and validation sample ratio
[number]<put parameter description here>
Default: 0.5
Name of the discrimination field
[string]<put parameter description here>
Default: Class
Classifier to use for the training
[selection]<put parameter description here>
Options:
Default: 0
Number of boosting algorithm iterations
[number]<put parameter description here>
Default: 200
Regularization parameter
[number]<put parameter description here>
Default: 0.01
Portion of the whole training set used for each algorithm iteration
[number]<put parameter description here>
Default: 0.8
Maximum depth of the tree
[number]<put parameter description here>
Default: 3
set user defined seed
[number]<put parameter description here>
Default: 0
Output confusion matrix
[file]Output model
[file]processing.runalg('otb:trainimagesclassifiergbt', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.gbt.w, -classifier.gbt.s, -classifier.gbt.p, -classifier.gbt.max, -rand, -io.confmatout, -io.out)