<put algortithm description here>
Input Image List
[multipleinput: rasters]Input Vector Data List
[multipleinput: any vectors]Input XML image statistics file
[file]Optional.
<put parameter description here>
Default elevation
[number]<put parameter description here>
Default: 0
Maximum training sample size per class
[number]<put parameter description here>
Default: 1000
Maximum validation sample size per class
[number]<put parameter description here>
Default: 1000
On edge pixel inclusion
[boolean]<put parameter description here>
Default: True
Training and validation sample ratio
[number]<put parameter description here>
Default: 0.5
Name of the discrimination field
[string]<put parameter description here>
Default: Class
Classifier to use for the training
[selection]<put parameter description here>
Options:
Default: 0
Train Method Type
[selection]<put parameter description here>
Options:
Default: 0
Number of neurons in each intermediate layer
[string]<put parameter description here>
Default: None
Neuron activation function type
[selection]<put parameter description here>
Options:
Default: 1
Alpha parameter of the activation function
[number]<put parameter description here>
Default: 1
Beta parameter of the activation function
[number]<put parameter description here>
Default: 1
Strength of the weight gradient term in the BACKPROP method
[number]<put parameter description here>
Default: 0.1
Strength of the momentum term (the difference between weights on the 2 previous iterations)
[number]<put parameter description here>
Default: 0.1
Initial value Delta_0 of update-values Delta_{ij} in RPROP method
[number]<put parameter description here>
Default: 0.1
Update-values lower limit Delta_{min} in RPROP method
[number]<put parameter description here>
Default: 1e-07
Termination criteria
[selection]<put parameter description here>
Options:
Default: 2
Epsilon value used in the Termination criteria
[number]<put parameter description here>
Default: 0.01
Maximum number of iterations used in the Termination criteria
[number]<put parameter description here>
Default: 1000
set user defined seed
[number]<put parameter description here>
Default: 0
Output confusion matrix
[file]Output model
[file]processing.runalg('otb:trainimagesclassifierann', -io.il, -io.vd, -io.imstat, -elev.default, -sample.mt, -sample.mv, -sample.edg, -sample.vtr, -sample.vfn, -classifier, -classifier.ann.t, -classifier.ann.sizes, -classifier.ann.f, -classifier.ann.a, -classifier.ann.b, -classifier.ann.bpdw, -classifier.ann.bpms, -classifier.ann.rdw, -classifier.ann.rdwm, -classifier.ann.term, -classifier.ann.eps, -classifier.ann.iter, -rand, -io.confmatout, -io.out)