QGIS User Guide Выпуск 2.2 **QGIS** Project | 1 | Преамбула | 3 | |---|---|------------------------------------| | 2 | 2.1 Элементы интерфейса пользователя | 5
5
6 | | 3 | Предисловие | 7 | | 4 | 4.1 Просмотр данных 4.2 Исследование данных и создание карт 4.3 Управление данными: создание, редактирование и экспорт 1 4.4 Анализ данных 1 4.5 Публикация карт в сети Интернет 1 4.6 Расширение функциональности QGIS с помощью модулей расширения 1 4.7 Консоль Рython 1 | 9
9
10
10
10
11 | | 5 | Что нового в QGIS 2.2 5.1 Application and Project Options 1 5.2 Data Providers 1 5.3 Digitising 1 5.4 General 1 5.5 Компоновщик карт 1 5.6 QGIS Server 1 5.7 Символика 1 | 13
13
13
14
14
15 | | 6 | 6.1 Установка 1 6.2 Примеры данных 1 6.3 Пример сеанса работы 1 6.4 Starting and Stopping QGIS 1 6.5 Параметры командной строки 1 6.6 Проекты 2 | 1 7
17
18
19
21 | | 7 | 7.1 Главное меню 2 7.2 Панель инструментов 3 7.3 Легенда 3 | 24
30
31
33 | | | 7.5 | Строка состояния | |-----------|------|--| | 8 | Осно | вные инструменты 35 | | | 8.1 | Комбинации клавиш | | | 8.2 | Контекстная справка | | | 8.3 | Рендеринг | | | 8.4 | Измерения | | | 8.5 | Определение объектов | | | 8.6 | Оформление | | | 8.7 | Инструменты аннотации | | | 8.8 | Пространственные закладки | | | 8.9 | Встраиваемые проекты | | 9 | Наст | ройка QGIS 47 | | | 9.1 | Панели инструментов | | | 9.2 | Свойства проекта | | | 9.3 | Параметры | | | 9.4 | Настройка интерфейса | | 10 | Рабо | га с проекциями 59 | | 10 | 10.1 | Обзор поддержки проекций | | | 10.1 | Настройка системы координат по умолчанию | | | 10.2 | Перепроецирование «на лету» | | | | Пользовательские системы координат | | | | Default datum transformations | | | 05 | OCIG | | 11 | U003 | реватель QGIS 65 | | 12 | Рабо | та с векторными данными 67 | | | 12.1 | Поддерживаемые форматы | | | 12.2 | Свойства векторного слоя | | | 12.3 | Редактирование | | | 12.4 | Конструктор поисковых запросов | | | 12.5 | Калькулятор полей | | 13 | Рабо | та с растровыми данными 131 | | | | Работа с растровыми данными | | | | Свойства растра | | | | Калькулятор растров | | | | | | 14 | | га с данными OGC | | | | QGIS как клиент OGC | | | 14.2 | QGIS как сервер ОGC | | 15 | | га с данными GPS 157 | | | 15.1 | Модуль GPS | | | 15.2 | GPS-слежение | | 16 | Инте | грация с GRASS GIS 167 | | 10 | 16.1 | Запуск расширения GRASS | | | 16.2 | Загрузка растровых и векторных слоёв GRASS | | | 16.3 | Область и набор GRASS | | | 16.4 | Импорт данных в область GRASS | | | 16.5 | Модель векторных данных GRASS | | | 16.6 | Создание нового векторного слоя GRASS | | | 16.7 | Оцифровка и правка векторных слоёв GRASS | | | 16.8 | Инструмент работы с регионом GRASS | | | 16.9 | The GRASS Toolbox | | 17 | | 1 | 185 | |-----------|----------|---|--------------| | | 17.1 | Введение | 185 | | | 17.2 | Панель инструментов | 186 | | | 17.3 | Редактор моделей | 195 | | | 17.4 | Интерфейс пакетной обработки | 202 | | | 17.5 | Изпользование алгоритмов геообработки в консоли | 204 | | | 17.6 | Журнал | 209 | | | 17.7 | Настройка сторонних приложений | 210 | | | 17.8 | The SEXTANTE Commander | 217 | | | | | | | 18 | Ком | | 219 | | | 18.1 | First steps | | | | 18.2 | Rendering mode | | | | 18.3 | Composer Items | | | | 18.4 | Manage items | | | | 18.5 | Инструменты отмены и возврата | | | | 18.6 | Atlas generation | | | | 18.7 | Создание вывода | | | | 18.8 | Manage the Composer | 244 | | | | | | | 19 | | | 245 | | | 19.1 | Модули QGIS | | | | 19.2 | Использование модулей ядра QGIS | | | | 19.3 | Модуль «Захват координат» | | | | 19.4 | Модуль «DB Manager» | | | | 19.5 | Модуль «Преобразователь Dxf2Shp» | | | | 19.6 | Модуль eVis | | | | 19.7 | Модуль fTools | | | | 19.8 | Модуль GDAL Tools | | | | 19.9 | Модуль привязки растров | | | | | Модуль интерполяции | | | | 19.11 | Оффлайновое редактирование | 276 | | | 19.12 | Oracle Spatial GeoRaster Plugin | 277 | | | 19.13 | Морфометрический анализ | 279 | | | 19.14 | Модуль «Теплокарта» | 280 | | | 19.15 | Модуль «Road Graph» | 284 | | | 19.16 | Модуль «Пространственные запросы» | 285 | | | 19.17 | ′ Модуль SPIT | 287 | | | | Модуль «SQL Anywhere» | | | | 19.19 | Модуль «Проверка топологии» | 289 | | | 19.20 | Модуль «Зональная статистика» | 290 | | | | | | | 20 | Спра | r w i L | 293 | | | 20.1 | Списки рассылки | 293 | | | 20.2 | IRC | | | | 20.3 | Багтрекер | 294 | | | 20.4 | Блог | 295 | | | 20.5 | Модули | 295 | | | 20.6 | Wiki | 295 | | | | | | | 21 | _ | | 297 | | | | GNU General Public License | | | | 21.2 | GNU Free Documentation License | 301 | | 0.0 | | | - | | 22 | Лите | ература и ссылки на web-ресурсы | 307 | | Α. | . ds = = | | 200 | | HJ | іфаві | итный указатель | 309 | • Оглавление 1 2 Оглавление ### Преамбула This document is the original user guide of the described software QGIS. The software and hardware described in this document are in most cases registered trademarks and are therefore subject to legal requirements. QGIS is subject to the GNU General Public License. Find more information on the QGIS homepage, http://www.qgis.org. The details, data, and results in this document have been written and verified to the best of the knowledge and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are possible. Therefore, data are not liable to any duties or guarantees. The authors, editors and publishers do not take any responsibility or liability for failures and their consequences. You are always welcome to report possible mistakes. This document has been typeset with reStructuredText. It is available as reST source code via github and online as HTML and PDF via http://www.qgis.org/en/docs/. Translated versions of this document can be downloaded in several formats via the documentation area of the QGIS project as well. For more information about contributing to this document and about translating it, please visit http://www.qgis.org/wiki/. #### Ссылки в этом документе Этот документ содержит внутренние и внешние ссылки. При нажатии на внутреннюю ссылку перемещение происходит внутри документа, в то время как при нажатии на внешнюю ссылку — открывается адрес в сети Интернет. В документе, представленном в формате PDF, внутренние и внешние ссылки показаны синим цветом, при этом внешние ссылки обрабатываются интернетбраузером, назначенным в системе по умолчанию. В документе, представленном в формате HTML, интернет-браузер отображает и обрабатывает внутренние и внешние ссылки одинаково. #### Авторы и редакторы руководства пользователя, руководства по сборке и компиляции: Copyright (c) 2004 - 2014 QGIS Development Team Адрес в сети Интернет: http://www.qgis.org #### Лицензия этого документа Разрешается копировать, распространять и/или изменять этот документ в соответствии с условиями GNU Free Documentation License, версии 1.3 или более поздней, опубликованной Free Software Foundation; без каких-либо неизменяемых разделов, текста, помещаемого на первой странице обложки, и без текста, помещаемого на последней странице обложки. Копия текста лицензии представлена в Разделе GNU Free Documentation License. . ### Элементы This section describes the uniform styles that will be used throughout this manual. ### 2.1 Элементы интерфейса пользователя The GUI convention styles are intended to mimic the appearance of the GUI. In general, a style will reflect the non-hover appearance, so a user can visually scan the GUI to find something that looks like the instruction in the manual. - Пункты меню: Слой → Добавить растровый слой или Вид → Панели инструментов → Оцифровка Инструмент: Добавить растровый слой Кнопка : [По умолчанию] - imoma i [210 y most rammo] - Заголовок диалогового окна: Свойства слоя - Вкладка: Общие - Флажок: **У** Отрисовка - Radio Button: Postqis SRID EPSG ID - Select a number: 1,00 \$ - Select a string: - Browse for a file: - Select a color: Change - Ползунок: - Ввод текста: Display name (lakes.shp) Затенение указывает на интерактивный компонент графического интерфейса. # 2.2 Текстовые элементы или клавиатурные сокращения This manual also includes styles related to text, keyboard commands and coding to indicate different entities, such as classes or methods. These styles do not correspond to the actual appearance of any text or coding within QGIS. • Гиперссылки: http://qgis.org - Keystroke Combinations: Press Ctrl+B, meaning press and hold the Ctrl key and then press the B key. - Название файла: lakes.shp - Название класса: NewLayer - Метод: classFactory - Имя сервера: myhost.de - Текст, вводимый пользователем: qgis --help Lines of code are indicated by a fixed-width font: ``` PROJCS["NAD_1927_Albers", GEOGCS["GCS_North_American_1927", ``` # 2.3 Инструкции, специфичные для конкретных платформ GUI sequences and small amounts of text may be formatted inline: Click $\overset{\bullet}{\triangle} \stackrel{\bullet}{\approx} File \times QGIS \rightarrow Quit \ to \ close \ QGIS$. This indicates that on Linux, Unix and Windows platforms, you should click the File menu first, then Quit, while on Macintosh OS X platforms, you should click the QGIS menu first, then Quit. Larger amounts of text may be formatted as a list: - 🚨 Do this - 👂 Do that - X Do something else or as paragraphs: △ X Do this and this and this. Then do this and this and this, and this and this and this and this and this. Do that. Then do that and that and that, and that and that and that, and that and that and that and
that and that and that and that. Снимки экрана, которые встречаются в руководстве пользователя, были созданы на разных платформах; платформа обозначается специальной иконкой в конце подписи к рисунку. б Глава 2. Элементы ### Предисловие Добро пожаловать в удивительный мир географических информационных систем (ГИС)! QGIS is an Open Source Geographic Information System. The project was born in May of 2002 and was established as a project on SourceForge in June of the same year. We've worked hard to make GIS software (which is traditionally expensive proprietary software) a viable prospect for anyone with basic access to a personal computer. QGIS currently runs on most Unix platforms, Windows, and OS X. QGIS is developed using the Qt toolkit (http://qt.digia.com) and C++. This means that QGIS feels snappy and has a pleasing, easy-to-use graphical user interface (GUI). QGIS aims to be a user-friendly GIS, providing common functions and features. The initial goal of the project was to provide a GIS data viewer. QGIS has reached the point in its evolution where it is being used by many for their daily GIS data-viewing needs. QGIS supports a number of raster and vector data formats, with new format support easily added using the plugin architecture. QGIS выпускается на условиях лицензии GNU General Public License (GPL). Разработка QGIS под этой лицензией означает, что вы можете просмотреть и изменить исходный код, и гарантирует, что вы, наш счастливый пользователь, всегда будете иметь доступ к программному обуспечению ГИС, которое является бесплатным и может свободно адаптироваться. Вы должны были получить полную копию лицензии с вашей копией QGIS, лицензию также можете найти в Приложении GNU $General\ Public\ License$. #### Совет: Актуальная версия документации The latest version of this document can always be found in the documentation area of the QGIS website at http://www.qgis.org/en/docs/. ### Возможности QGIS offers many common GIS functionalities provided by core features and plugins. A short summary of six general categories of features and plugins is presented below, followed by first insights into the integrated Python console. ### 4.1 Просмотр данных Можно просматривать и накладывать друг на друга векторные и растровые данные в различных форматах и проекциях без преобразования во внутренний или общий формат. Поддерживаются следующие основные форматы: - Spatially-enabled tables and views using PostGIS, SpatiaLite and MS SQL Spatial, Oracle Spatial, vector formats supported by the installed OGR library, including ESRI shapefiles, MapInfo, SDTS, GML and many more. See section *Работа с векторными данными*. - Raster and imagery formats supported by the installed GDAL (Geospatial Data Abstraction Library) library, such as GeoTIFF, ERDAS IMG, ArcInfo ASCII GRID, JPEG, PNG and many more. See section Работа с растровыми данными. - GRASS raster and vector data from GRASS databases (location/mapset). See section *Интеграция c GRASS GIS*. - Online spatial data served as OGC Web Services, including WMS, WMTS, WCS, WFS, and WFS-T. See section *Работа с данными OGC*. - OpenStreetMap data. See section plugins osm. # 4.2 Исследование данных и создание карт You can compose maps and interactively explore spatial data with a friendly GUI. The many helpful tools available in the GUI include: - Обозреватель QGIS - Перепроецирование «на лету» - DB Manager - компоновщик карт - панель обзора - пространственные закладки - инструменты аннотациий - определение/выборка объектов - редактирование/просмотр/поиск атрибутов - Data-defined feature labeling - Data-defined vector and raster symbology tools - Atlas map composition with graticule layers - North arrow scale bar and copyright label for maps - Support for saving and restoring projects ### 4.3 Управление данными: создание, редактирование и экспорт You can create, edit, manage and export vector and raster layers in several formats. QGIS offers the following: - Digitizing tools for OGR-supported formats and GRASS vector layers - Ability to create and edit shapefiles and GRASS vector layers - Georeferencer plugin to geocode images - GPS tools to import and export GPX format, and convert other GPS formats to GPX or down/upload directly to a GPS unit (On Linux, usb: has been added to list of GPS devices.) - Support for visualizing and editing OpenStreetMap data - Ability to create spatial database tables from shapefiles with DB Manager plugin - улучшенная поддержка пространственных баз данных - Tools for managing vector attribute tables - Option to save screenshots as georeferenced images ### 4.4 Анализ данных You can perform spatial data analysis on spatial databases and other OGR- supported formats. QGIS currently offers vector analysis, sampling, geoprocessing, geometry and database management tools. You can also use the integrated GRASS tools, which include the complete GRASS functionality of more than 400 modules. (See section *Unmerpaqua c GRASS GIS*.) Or, you can work with the Processing Plugin, which provides a powerful geospatial analysis framework to call native and third-party algorithms from QGIS, such as GDAL, SAGA, GRASS, fTools and more. (See section *Beedenue*.) # 4.5 Публикация карт в сети Интернет QGIS can be used as a WMS, WMTS, WMS-C or WFS and WFS-T client, and as a WMS, WCS or WFS server. (See section $Paboma\ c\ \partial ahhbbmu\ OGC$.) Additionally, you can publish your data on the Internet using a webserver with UMN MapServer or GeoServer installed. # 4.6 Расширение функциональности QGIS с помощью модулей расширения QGIS can be adapted to your special needs with the extensible plugin architecture and libraries that can be used to create plugins. You can even create new applications with C++ or Python! 10 Глава 4. Возможности #### 4.6.1 Основные модули Core plugins include: - 1. Coordinate Capture (Capture mouse coordinates in different CRSs) - 2. DB Manager (Импорт/экспорт, редактирование и просмотр слоёв и таблиц; выполнение SQLзапросов) - 3. Diagram Overlay (Place diagrams on vector layers) - 4. Dxf2Shp Converter (Convert DXF files to shapefiles) - 5. eVIS (Visualize events) - 6. fTools (Analyze and manage vector data) - 7. Инструменты GDAL (интеграция инструментов GDAL в QGIS) - 8. Georeferencer GDAL (Add projection information to rasters using GDAL) - 9. GPS Tools (Load and import GPS data) - 10. GRASS (Integrate GRASS GIS) - 11. Heatmap (Generate raster heatmaps from point data) - 12. Interpolation Plugin (Interpolate based on vertices of a vector layer) - 13. Offline Editing (Allow offline editing and synchronizing with databases) - 14. Oracle Spatial GeoRaster (Доступ к данным Oracle Spatial GeoRaster) - 15. Processing (panee SEXTANTE) - 16. Raster Terrain Analysis (Analyze raster-based terrain) - 17. Road Graph Plugin (Analyze a shortest-path network) - 18. Пространственные запросы - 19. SPIT (Import shapefiles to PostgreSQL/PostGIS) - 20. SQL Anywhere (работа с векторными слоями в БД SQL Anywhere) - 21. Topology Checker (Find topological errors in vector layers) - 22. Zonal Statistics Plugin (Calculate count, sum, and mean of a raster for each polygon of a vector layer) ### 4.6.2 Внешние модули Python QGIS offers a growing number of external Python plugins that are provided by the community. These plugins reside in the official Plugins Repository and can be easily installed using the Python Plugin Installer. See Section *The Plugins Menus*. # 4.7 Консоль Python For scripting, it is possible to take advantage of an integrated Python console, which can be opened from menu: $Plugins \rightarrow Python\ Console$. The console opens as a non-modal utility window. For interaction with the QGIS environment, there is the qgis.utils.iface variable, which is an instance of QgsInterface. This interface allows access to the map canvas, menus, toolbars and other parts of the QGIS application. about For further information working with the Python console programming QGIS plugins and applications, please refer http://www.qgis.org/html/en/docs/pyqgis developer cookbook/index.html. ### 4.8 Known Issues ### 4.8.1 Number of open files limitation If you are opening a large QGIS project and you are sure that all layers are valid, but some layers are flagged as bad, you are probably faced with this issue. Linux (and other OSs, likewise) has a limit of opened files by process. Resource limits are per-process and inherited. The ulimit command, which is a shell built-in, changes the limits only for the current shell process; the new limit will be inherited by any child processes. You can see all current ulimit info by typing ``` user@host:~$ ulimit -aS ``` You can see the current allowed number of opened files per process with the following command on a console ``` user@host:~$ ulimit -Sn ``` To change the limits for an existing session, you may be able to use something like ``` user@host:~$ ulimit -Sn #number_of_allowed_open_files user@host:~$ ulimit -Sn user@host:~$ qgis ``` #### To fix it forever On most Linux systems, resource limits are set on login by the pam_limits module according to the settings contained in /etc/security/limits.conf or /etc/security/limits.d/*.conf. You should be able to edit those files if you have root privilege (also via sudo), but you will need to log in again before any changes take effect. More info: ``` http://www.cyberciti.biz/faq/linux-increase-the-maximum-number-of-open-files/http://linuxaria.com/article/open-files-in-linux?lang=en ``` . ### Что нового в QGIS 2.2 Please note that this is a release in our 'cutting edge' release series. As such, it contains new features and extends the programmatic interface over QGIS 2.0. We recommend that you use this version over previous releases. This release includes hundreds of bug fixes and many new features and enhancements that will be described in this manual. You may also review the visual changelog at $\frac{\text{http:}}{\text{changelog.linfiniti.com/qgis/version/}21/.}$ # 5.1 Application
and Project Options • Support for measurement in nautical miles: You can now measure distances using nautical miles. To enable this, use the Settings → Options → Map Tools option panel. #### 5.2 Data Providers - One-to-many relations support: This release supports the ability to define 1:n relations. The relations are defined in the *project properties* dialog. Once relations exist for a layer, a new user interface element in the form view (e.g., when identifying a feature and opening its form) will list the related entities. This provides a powerful way to express, for instance, the inspection history on a length of pipeline or road segment. - DXF Export tool: A new tool for exporting DXFs has been added to the *Project* menu. - Paste as new vector layer: It is a common activity in a GIS to create a sub-selection and then to create a new layer from the selection. In QGIS you can already do Save Selection As to save a layer from your selection; now, functionality is offered that allows you to create a new file or memory layer from whatever is in your clipboard. Simply select some features, copy them to your clipboard and then do Edit → Paste Features As and choose either 'New Vector Layer' or 'New Memory Layer' from the submenu. The best part of this new feature is that if you have some Well Known Text (WKT) features in your clipboard from another app, you can simply paste them into QGIS as a new layer now. - WMS legend graphic in table of contents and composer: Prior to QGIS 2.2 the WMS data provider was not able to display a legend in the table of contents' layer list. Similarly no legend could be displayed in the map composer. QGIS 2.2 addresses both of these issues. # 5.3 Digitising • Fill ring digitizing tool: This new tool is used to cut holes in polygons and automatically fill them with new features. If you hold down Ctrl when finalising the feature, the attributes will be taken from the parent feature. ### 5.4 General - Recent expressions saved: The expression builder will now remember the last 20 used expressions. - Paste WKT from clipboard: QGIS can now paste and create a new feature based on WKT that is found in the clipboard. Simply copy some WKT and paste into an editable layer. You can also create a new layer by selecting $Edit \rightarrow Paste\ As \rightarrow New\ Memory\ Layer$. ### 5.5 Компоновщик карт - **Zebra map border improvements**: You can now set the colours of the **Zebra** border on the map element in the map composer. - **Element rotation support**: Every type of element in the composer can now be rotated, including scale bars, tables and legends. For example, you can rotate a label on the composition so that it fits into your page layout better (as illustrated). Resizing of rotated elements has also been improved. - Composer scale added and ruler improvements: The appearance of rulers has been improved by adjusting the scale logic and by adding smaller ruler divisions, and by making vertical rulers use rotated text. There is also a new composer action for hiding/showing rulers. You can now quickly zoom to 100% page scale using the new Zoom to 100% tool on the toolbar. The composer window now lets you quickly switch the page scaling via a new scale combobox in the status bar. In addition, a new indicator has been added to show you the precise pixel position of your cursor. The [Close] and [Help] buttons have been removed from the bottom of the composer window to give you the maximum amount of screen space for working with your compositions. - World file generation: In the composer, you can now create georeferenced maps! Simply ensure that you choose the correct map element in the Composition tab and then export your map as a PNG file. An accompanying world file will be written, allowing you to load your exported composition in QGIS as a raster layer. - Working with multiple items: Support has been added for moving and resizing multiple items simultaneously. You can now hold Shift while resizing to maintain an item's ratio while resizing, or hold Ctrl to resize from the item's centre. These shortcut keys also apply to moving items, so holding Shift while moving an item constrains the movement to horizontal or vertical movement, and holding Ctrl temporarily disables item snapping. You can also hold Shift while pressing a cursor key to shift all selected items by a larger amount. - Atlas enhancements: You can now preview the individual pages of the map atlas that will be generated in the composer. While in atlas preview mode, you can output the current page without outputting the entire atlas. You can also tweak the map extent or scale for each feature while previewing the atlas page. Atlas map settings have been moved from the atlas panel to the map properties panel, so now, more than one map can be controlled by the atlas generation. There's a new option to automatically centre an overview map, which comes in handy when creating atlasbased maps. More context information is also now available so that you can adjust your symbology based on whether the feature is the current atlas feature or not. - Improved item selection: You can now select more than one item by clicking and dragging a box to select multiple items, and there are shortcuts for adding to a selection (holding Shift while dragging), subtracting from a selection (holding Ctrl while dragging) and switching to "within" selection mode (holding Alt while dragging). Shift-clicking an already-selected item will remove it from the selection. There are also shortcuts and menu items for selecting all items, clearing a selection, and inverting a selection. It's also now possible to select items that are hidden below other items by Ctrl-clicking an item, or by using 'Select Next Item Above/Below' in the new composer Edit menu. - Better navigation of compositions: QGIS 2.2 includes many improvements to help you navigate your compositions. You can now zoom in or out from a composition by using the mouse scroll wheel. A dedicated pan tool has been added, which allows you to drag the composition around, and you can also switch immediately to pan mode by holding the space bar or by holding the mouse scroll wheel. There's also a new zoom tool, which allows you to precisely zoom to a specific area of your composition. You can also switch to zoom mode at any time by pressing and holding Ctrl-Space and drawing a zoom region on the composition. • Improved styling of pages and shapes: You can now control the style of the composition background using the full range of QGIS' symbology options. It's now possible to export compositions with a transparent (or semi-transparent) background. Shape items (rectangles, triangles and ellipses) can also be styled using the same options as polygon map layers. You can even style the page background or shapes by using data-defined settings based on the current atlas feature! There's also a new option for rounding the corners of rectangle shapes. ### 5.6 QGIS Server • WCS Support added to QGIS Server: QGIS Server already supports various standards, including Web Map Service (WMS version 1.3.0 and 1.1.1), Web Feature Service (WFS version 1.0.0) and Web Feature Service with Transaction (WFS-T). With this new release of QGIS, you can now serve raster layers using the Web Coverage Service (WCS version 1.0.0) standard. ### 5.7 Символика - **Gradient fill support**: The new gradient fill feature lets you create better cartography than ever before. The feature has numerous options providing for great flexibility in how you apply gradients to your features. These include: - Two-colour or ramp-based fills - Canvas- or object-based origin for your gradients - Gradients originating from the centroid of a feature - Conical, linear and radial gradient types - Data-defined options (i.e., to use an expression or a table column) for all gradient properties - Label support for palleted rasters: Rasters that use a fixed colour pallette (for instance, a land cover map) can now have category labels assigned which will be shown in the map legend and in the composer legend. - Colour ramps can be inverted: A new option has been added to symbology dialogs that deal with colour ramps to allow you to invert the colour ramp when it is created. - Copy and Paste in rule-based renderer: In the rule-based renderer, you can now right-click on a rule and then copy and paste the rule as a new rule. - On-the-fly feature generalisation: QGIS 2.2 introduces support for on-the-fly feature generalisation. This can improve rendering times when drawing many complex features at small scales. This feature can be enabled or disabled in the layer settings. There is also a new global setting that enables generalisation by default for newly added layers. Note: Feature generalisation may introduce artefacts into your rendered output in some cases. These may include slivers between polygons and inaccurate rendering when using offset-based symbol layers. - Anchor points can be set for marker layers: When defining symbology with marker layers (e.g., a point layer symbolized with SVG markers) you can now specify what part of the image should correspond to the 'anchor point'. For example, you can indicate that the bottom-left corner of the image should coincide with the position of the feature. You can also use the data-defined properties to have this property set at render time based on an attribute in the data table for that layer (or an arbitrary expression). 5.6. QGIS Server 15 - Thematic maps based on expressions: Categorized and graduated thematic maps can now be created using the result of an expression. In the Properties dialog for vector layers, the attribute chooser has been augmented with an expression builder. So now, you no longer need to write the classification attribute to a new column in your attribute table if you want the classification attribute to be a composite of multiple fields, or a formula of some sort. - Expression support in symbol
diagrams for size and attributes: You can now use an expression to define the size and attributes when using the diagramming capabilities of QGIS. - Else rule in rule-based renderer: The rule-based renderer now supports an Else rule that will be run if none of the other rules on that level match. Else rules can be nested just like any other rules. An example might be: ``` type = 'water' (style grey) ELSE (style red) ``` • Inner stroke support for polygons: Support has been added for polygon strokes to be limited to the interior of the polygon (so as not to overflow into a neighbouring polygon). ### 5.8 Интерфейс - Improved properties dialogs: All properties dialogs have had their main property menus updated so that they look slicker, with an inverse-coloured side bar. This is purely cosmetic but should make it easier to know what your current context is in a dialog. - Expression dialog improvements: We have made some tweaks to the expression dialog power users can now hide the operator buttons. There are also now splitters between the function list and function help areas, and between the expression and function list area. - New keybindings: We have updated the keyboard shortcuts in QGIS to make it more efficient to carry out repetitive tasks. - Ctrl-d: Remove selected layers in table of contents - >: Select next vertex when using the node tool - <: Select previous vertex when using the node tool - Delete or Backspace: Delete the selected features (you can undo these actions), or nodes when using the node tool - F5: Update the canvas (instead of Ctrl-r) ### Первые шаги This chapter gives a quick overview of installing QGIS, some sample data from the QGIS web page, and running a first and simple session visualizing raster and vector layers. #### 6.1 Установка Installation of QGIS is very simple. Standard installer packages are available for MS Windows and Mac OS X. For many flavors of GNU/Linux, binary packages (rpm and deb) or software repositories are provided to add to your installation manager. Get the latest information on binary packages at the QGIS website at http://download.qgis.org. ### 6.1.1 Установка из исходного кода If you need to build QGIS from source, please refer to the installation instructions. They are distributed with the QGIS source code in a file called INSTALL. You can also find them online at $\frac{\text{http://htmlpreview.github.io/?https://raw.github.com/qgis/QGIS/master/doc/INSTALL.html}$ #### 6.1.2 Установка на внешний носитель QGIS allows you to define a --configpath option that overrides the default path for user configuration (e.g., ~/.qgis2 under Linux) and forces **QSettings** to use this directory, too. This allows you to, for instance, carry a QGIS installation on a flash drive together with all plugins and settings. See section Braadka «Cucmema» for additional information. ### 6.2 Примеры данных В данном руководстве приводятся приёмы работы, основанные на демонстрационном наборе данных QGIS. The Windows installer has an option to download the QGIS sample dataset. If checked, the data will be downloaded to your My Documents folder and placed in a folder called GIS Database. You may use Windows Explorer to move this folder to any convenient location. If you did not select the checkbox to install the sample dataset during the initial QGIS installation, you may do one of the following: - Use GIS data that you already have - Download sample data from http://download.osgeo.org/qgis/data/qgis sample data.zip - Uninstall QGIS and reinstall with the data download option checked (only recommended if the above solutions are unsuccessful) For GNU/Linux and Mac OS X, there are not yet dataset installation packages available as rpm, deb or dmg. To use the sample dataset, download the file qgis_sample_data as a ZIP archive from http://download.osgeo.org/qgis/data/qgis sample data.zip and unzip the archive on your system. The Alaska dataset includes all GIS data that are used for examples and screenshots in the user guide; it also includes a small GRASS database. The projection for the QGIS sample dataset is Alaska Albers Equal Area with units feet. The EPSG code is 2964. ``` PROJCS["Albers Equal Area", GEOGCS ["NAD27", DATUM ["North_American_Datum_1927", SPHEROID ["Clarke 1866", 6378206.4, 294.978698213898, AUTHORITY["EPSG", "7008"]], TOWGS84[-3,142,183,0,0,0,0], AUTHORITY["EPSG", "6267"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG", "8901"]], UNIT["degree", 0.0174532925199433, AUTHORITY ["EPSG", "9108"]], AUTHORITY["EPSG", "4267"]], PROJECTION["Albers_Conic_Equal_Area"], PARAMETER["standard_parallel_1",55], PARAMETER["standard_parallel_2",65], PARAMETER["latitude_of_center",50], PARAMETER["longitude_of_center",-154], PARAMETER["false_easting",0], PARAMETER["false_northing",0], UNIT["us_survey_feet",0.3048006096012192]] ``` If you intend to use QGIS as a graphical front end for GRASS, you can find a selection of sample locations (e.g., Spearfish or South Dakota) at the official GRASS GIS website, http://grass.osgeo.org/download/sample-data/. # 6.3 Пример сеанса работы Now that you have QGIS installed and a sample dataset available, we would like to demonstrate a short and simple QGIS sample session. We will visualize a raster and a vector layer. We will use the landcover raster layer, qgis_sample_data/raster/landcover.img, and the lakes vector layer, qgis_sample_data/gml/lakes.gml. ### 6.3.1 Запуск QGIS - Start QGIS by typing "QGIS" at a command prompt, or if using a precompiled binary, by using the Applications menu. - 🎜 Запустите QGIS, используя меню Пуск или ярлык на Рабочем столе, или двойным щелчком на файле проекта QGIS. - X Дважды щёлкните на значке QGIS в папке Приложений. #### 6.3.2 Загрузка пробных слоёв - 1. Щёлкните на значке Добавить растровый слой. - 2. Browse to the folder qgis_sample_data/raster/, select the ERDAS IMG file landcover.img and click [Open]. - 3. If the file is not listed, check if the *Files of type* combo box at the bottom of the dialog is set on the right type, in this case "Erdas Imagine Images (*.img, *.IMG)". - 4. Теперь щёлкните на значке 🎾 Добавить векторный слой. - 5. File should be selected as Source Type in the new Add vector layer dialog. Now click [Browse] to select the vector layer. - 6. Browse to the folder qgis_sample_data/gml/, select 'Geography Markup Language [GML] [OGR] (.gml,.GML)' from the *Files of type* combo box, then select the GML file lakes.gml and click [Open]. In the *Add vector layer* dialog, click [OK]. - 7. Немного увеличьте изображение территории с озерами. - 8. Дважды щёлкните на слое lakes в панели слоёв, чтобы открыть окно Свойства слоя. - 9. Click on the Style tab and select a blue as fill color. - 10. Click on the *Labels* tab and check the **Label** this layer with checkbox to enable labeling. Choose the "NAMES" field as the field containing labels. - 11. To improve readability of labels, you can add a white buffer around them by clicking "Buffer" in the list on the left, checking \square Draw text buffer and choosing 3 as buffer size. - 12. Click [Apply]. Check if the result looks good, and finally click [OK]. You can see how easy it is to visualize raster and vector layers in QGIS. Let's move on to the sections that follow to learn more about the available functionality, features and settings, and how to use them. ### 6.4 Starting and Stopping QGIS In section $\Pi pumep$ ceanca patomu you already learned how to start QGIS. We will repeat this here, and you will see that QGIS also provides further command line options. - Assuming that QGIS is installed in the PATH, you can start QGIS by typing qgis at a command prompt or by double clicking on the QGIS application link (or shortcut) on the desktop or in the Applications menu. - 🎜 Запустите QGIS, используя меню Пуск или ярлык на Рабочем столе, или двойным щелчком на файле проекта QGIS. - X Double click the icon in your Applications folder. If you need to start QGIS in a shell, run /path-to-installation-executable/Contents/MacOS/Qgis. To stop QGIS, click the menu option \triangle \triangleright $File \times QGIS \rightarrow Quit$, or use the shortcut Ctrl+Q. # 6.5 Параметры командной строки △ QGIS supports a number of options when started from the command line. To get a list of the options, enter qgis --help on the command line. The usage statement for QGIS is: ``` qgis --help QGIS - 2.2.0-Valmiera 'Valmiera' (exported) QGIS is a user friendly Open Source Geographic Information System. Usage: qgis [OPTION] [FILE] options: [--snapshot filename] emit snapshot of loaded datasets to given file [--width width] width of snapshot to emit [--height height] height of snapshot to emit [--lang language] use language for interface text ``` ``` [--project projectfile] load the given QGIS project [--extent xmin,ymin,xmax,ymax] set initial map extent [--nologo] hide splash screen [--noplugins] don't restore plugins on startup [--nocustomization] don't apply GUI customization [--customizationfile] use the given ini file as GUI customization [--optionspath path] use the given QSettings path [--configpath path] use the given path for all user configuration [--code path] run the given python file on load [--help] this text FILES: Files specified on the command line can include rasters, vectors, and QGIS project files (.qgs): 1. Rasters - Supported formats include GeoTiff, DEM and others supported by GDAL 2. Vectors - Supported formats include ESRI Shapefiles and others supported by OGR and PostgreSQL layers using the PostGIS extension ``` #### Совет: Пример использования параметров командной строки You can start QGIS by specifying one or more data files on the command line. For example, assuming you are in the qgis_sample_data directory, you could start QGIS with a vector layer and a raster file set to load on startup using the following command: qgis ./raster/landcover.img ./gml/lakes.gml #### Π араметр --snapshot Этот параметр позволяет создавать снимок текущего вида в формате
PNG. Данная функция применяется при большом количестве проектов и при необходимости создания снимков имеющихся данных. Currently, it generates a PNG file with 800x600 pixels. This can be adjusted using the --width and --height command line arguments. A filename can be added after --snapshot. #### Параметр ---lang Based on your locale, QGIS selects the correct localization. If you would like to change your language, you can specify a language code. For example, --lang=it starts QGIS in italian localization. A list of currently supported languages with language code and status is provided at http://hub.qgis.org/wiki/quantum-gis/GUI Translation Progress. #### Параметр --project Starting QGIS with an existing project file is also possible. Just add the command line option --project followed by your project name and QGIS will open with all layers in the given file loaded. ### Параметр --extent To start with a specific map extent use this option. You need to add the bounding box of your extent in the following order separated by a comma: ``` --extent xmin, ymin, xmax, ymax ``` #### Параметр --nologo This command line argument hides the splash screen when you start QGIS. #### Параметр --noplugins If you have trouble at start-up with plugins, you can avoid loading them at start-up with this option. They will still be available from the Plugins Manager afterwards. #### Command line option --customizationfile Using this command line argument, you can define a GUI customization file, that will be used at startup. #### Π араметр --nocustomization Using this command line argument, existing GUI customization will not be applied at startup. #### Π араметр --optionspath You can have multiple configurations and decide which one to use when starting QGIS with this option. See Π apaMempM to confirm where the operating system saves the settings files. Presently, there is no way to specify a file to write settings to; therefore, you can create a copy of the original settings file and rename it. #### Π араметр --configpath This option is similar to the one above, but furthermore overrides the default path for user configuration (~/.qgis2) and forces **QSettings** to use this directory, too. This allows users to, for instance, carry a QGIS installation on a flash drive together with all plugins and settings. ### 6.6 Проекты The state of your QGIS session is considered a project. QGIS works on one project at a time. Settings are considered as being either per-project or as a default for new projects (see section Π apamempu). QGIS can save the state of your workspace into a project file using the menu options $Project \rightarrow \square$ Save or $Project \rightarrow \square$ Save As... Load saved projects into a QGIS session using $Project \rightarrow \cite{Project} \rightarrow Project \rightarrow New from template$ or $Project \rightarrow Open Recent \rightarrow$. Если вы хотите очистить сеанс и начать новый, выберите $\Pi poe \kappa m \to \square$ $Cosdam_b$. При выборе любого из этих вариантов вам будет предложено сохранить существующий проект, если были внесены изменения с момента его открытия или последнего сохранения. Информация, сохраненная в файле проекта, включает в себя: - добавленные слои - свойства слоёв, включая символику - проекцию окна карты - последний охват карты The project file is saved in XML format, so it is possible to edit the file outside QGIS if you know what you are doing. The file format has been updated several times compared with earlier QGIS versions. Project files from older QGIS versions may not work properly anymore. To be made aware of this, in the General tab under $Settings \rightarrow Options$ you can select: - 🌌 Запрашивать сохранение изменений в проекте и источниках данных, когда это необходимо - 🌌 Предупреждать при попытке открытия файлов проекта старых версий QGIS Whenever you save a project in QGIS 2.2 now a backup of the project file is made. ### 6.7 Вывод There are several ways to generate output from your QGIS session. We have discussed one already in section $\Pi poekmu$, saving as a project file. Here is a sampling of other ways to produce output files: • Пункт меню $Проект o \Box$ Сохранить как изображение... открывает диалог сохранения файла, в котором можно выбрать название, путь сохранения и формат изображения (PNG или JPG). 6.6. Проекты 21 Φ айл привязки с расширением PNGW или JPGW, сохраняемый в ту же папку, обеспечивает географическую привязку изображения. - Menu option $Project \to DXF\ Export\ ...$ opens a dialog where you can define the 'Symbology mode', the 'Symbology scale' and vector layers you want to export to DXF. - Menu option Project → New Print Composer opens a dialog where you can lay out and print the current map canvas (see section Κομπομοβιμικ καρπω). # Интерфейс QGIS When QGIS starts, you are presented with the GUI as shown in the figure (the numbers 1 through 5 in yellow circles are discussed below). Рис. 7.1: QGIS с загруженным демонстрационным набором данных 🚨 **Примечание:** Внешний вид элементов интерфейса (заголовки окон и т.п.) может отличаться, в зависисмости от операционной системы и менеджера окон. Интерфейс QGIS разделяется на пять областей: - 1. Главное меню - 2. Панель инструментов - 3. Легенда - 4. Область карты - 5. Строка состояния Компоненты интерфейса QGIS, комбинации клавиш и контекстная справка более подробно описаны в следующих разделах. ### 7.1 Главное меню The menu bar provides access to various QGIS features using a standard hierarchical menu. The top-level menus and a summary of some of the menu options are listed below, together with the associated icons as they appear on the toolbar, and keyboard shortcuts. The shortcuts presented in this section are the defaults; however, keyboard shortcuts can also be configured manually using the Configure shortcuts dialog, opened from $Settings \rightarrow Configure$ Shortcuts.... Although most menu options have a corresponding tool and vice-versa, the menus are not organized exactly like the toolbars. The toolbar containing the tool is listed after each menu option as a checkbox entry. Some menu options only appear if the corresponding plugin is loaded. For more information about tools and toolbars, see section Π anent uncmpyментов. ### 7.1.1 Проект | Пункт меню | Комбинация клавиш | Справка | Панель инструментов | |--|-------------------|-----------------------|------------------------------| | Создать | Ctrl+N | см. Проекты | Проект | | Открыть | Ctrl+0 | см. Проекты | $\mid \Pi poe \kappa m \mid$ | | $\mathit{Cosdamb}$ из шаблона $ ightarrow$ | | см. Проекты | $\Pi poe\kappa m$ | | $He extit{d} a$ вние проекты $ ightarrow$ | | см. Проекты | | | Сохранить | Ctrl+S | см. Проекты | $igg $ $\Pi poe\kappa m$ | | Save As | Ctrl+Shift+S | см. Проекты | $igg $ $\Pi poe\kappa m$ | | Save as Image | | см. Вывод | | | $DXF\ Export\ \dots$ | | см. Вывод | | | Создать макет | Ctrl+P | см. Компоновщик карты | Проект | | Управление макетами | | см. Компоновщик карты | $igg \Pi po e \kappa m$ | | $Maкemы\ \kappa apm ightarrow$ | | см. Компоновщик карты | | | Exit QGIS | Ctrl+Q | | | 7.1. Главное меню 25 # 7.1.2 Правка | Пункт меню | Комбина-
ция
клавиш | Справка | Панель инструментов | |---|---------------------------|--|---| | 🦘 Отменить | Ctrl+Z | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Вернуть | Ctrl+Shift+Z | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | ₩ Вырезать объекты | Ctrl+X | см. Редактирование
существующего слоя | Оцифровка | | В Копировать объекты | Ctrl+C | см. Редактирование
существующего слоя | Оцифровка | | $lue{lue{lue{lue{B}}}}$ Вставить объекты $lue{lue{B}}$ Paste features as $lue{lue{lue{A}}}$ | Ctrl+V | см. Редактирование
существующего слоя
см. Работа с таблицей
атрибутов | Оцифровка | | ⁰ № Создать точку | Ctrl+. | атриоутов см. Редактирование существующего слоя | Оцифровка | | 📆 Переместить объект | | см. Редактирование
существующего слоя | Оцифровка | | 🛂 Удалить выделенное | | см. Редактирование
существующего слоя | Оцифровка | | С Повернуть объект | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Упростить объект | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | 🔯 Добавить кольцо | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Г Добавить часть | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Fill Ring | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Удалить кольцо | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Удалить часть | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Корректировать
объекты | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Параллельная кривая | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Разбить объекты | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Split Parts | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | Объединить выделенные объекты | | см. Дополнительные
функции оцифровки | Дополнительные
функции оцифровки | | 26 Объединить атрибуты выделенных объектов | | см. Дополнительные
функции оцифровки | ава 7. Интерфейс QGIS
Дополнительные QGIS
функции оцифровки | | 🌠 Редактирование узлов | | см. Редактирование | Оцифровка | После активации Режима редактирования для слоя, в меню
Правка появится значок Добавить объект, в зависимости от типа слоя (точечный, линейный или полигональный). # 7.1.3 Правка (дополнительно) | Пункт меню | Комбинация | Справка | Панель | |------------|------------|--------------------|--------------| | | клавиш | | инструментов | | © Создать | | см. Редактирование | Оцифровка | | точку | | существующего слоя | | | Создать | | см. Редактирование | Оцифровка | | линию | | существующего слоя | | | Создать | | см. Редактирование | Оцифровка | | полигон | | существующего слоя | | # 7.1.4 Вид | Пункт меню | Комбинация | Справка | Панель | |---------------------------------|--------------|-------------------------------|--------------| | - | клавиш | | инструментов | | Прокрутка карты | | | Навигация | | У Центрировать выделение | | | Навигация | | Увеличить | Ctrl++ | | Навигация | | <i>Уменьшить</i> | Ctrl+- | | Навигация | | Bыбрать $ o$ | | см. Выбор объектов | Атрибуты | | Определить объекты | Ctrl+Shift+I | | Атрибуты | | $ extit{Измерить} ightarrow$ | | см. Измерения | Атрибуты | | Г Полный охват | Ctrl+Shift+F | | Навигация | | 💹 Увеличить до слоя | | | Навигация | | Увеличить до выделенного | Ctrl+J | | Навигация | | 🖊 Предыдущий охват | | | Навигация | | <i>№ Следующий охват</i> | | | Навигация | | 🎤 Увеличить до наилучшего | | | Навигация | | масштаба (100%) | | | | | $O\phi$ ормление $ o$ | | см. Оформление | | | Всплывающие описания | | | Атрибуты | | и Новая закладка | Ctrl+B | см. Пространственные закладки | Атрибуты | | Показать закладки | Ctrl+Shift+B | см. Пространственные закладки | Атрибуты | | 2 Обновить | Ctrl+R | | Навигация | ### 7.1.5 Слой Продолжае 7.1. Главное меню 27 Таблица 7.1 – продолжение с предыдущей страницы | Таблица 7.1 – продолжение с предыдущей страницы | | | | |--|-------------------|-------------------------------------|--| | Пункт меню | Комбинация клавиш | Справка | | | Пункт меню | Комбинация клавиш | Справка | | | $Cos dam b \rightarrow$ | | см Создание нового векторного слоя | | | Встроить слои и группы | | см. Встраиваемые проекты | | | V Добавить векторный слой ■ | Ctrl+Shift+V | см. Работа с векторными данными | | | 💶 Добавить растровый слой | Ctrl+Shift+R | см. Загрузка растровых данных в QG. | | | 🛂 Добавить слой PostGIS | Ctrl+Shift+D | см. Cnou PostGIS | | | 🖪 Добавить слой SpatiaLite | Ctrl+Shift+L | см. Cлои SpatiaLite | | | Добавить слой MSSQL Spatial | Ctrl+Shift+M | см. label_mssql | | | 🔩 Добавить слой Oracle GeoRaster | | см. Oracle Spatial GeoRaster Plugin | | | 🚣 Добавить слой SQL Anywhere | | см. Модуль «SQL Anywhere» | | | 🍕 Добавить слой WMS/WMTS | Ctrl+Shift+W | см. Kлиент WMS/WMTS | | | Добавить слой WCS | | см. Клиент WCS | | | Добавить WFS-слой | | см. Клиент WFS и WFS-T | | | 🥦 Добавить слой CSV | | see label_dltext | | | В Копировать стиль | | см. Вкладка «Стиль» | | | 🖺 Вставить стиль | | см. Вкладка «Стиль» | | | 🔳 Открыть таблицу атрибутов | | см. Работа с таблицей атрибутов | | | Режим редактирования | | см. Редактирование существующего с | | | Coxpанить правки | | см. Редактирование существующего с | | | // Текущие правки | | см. Редактирование существующего с | | | Companyme and a come was | | ar Pakama a makanna a mankama a | | | Сохранить выделение как | | см. Работа с таблицей атрибутов | | | | Ctrl+D | | | | \bigsqcup_{\bullet} Duplicate Layers (s) | G. 1. G. 1. G. | | | | Изменить систему координат
Выбрать систему координат слоя для проекта | Ctrl+Shift+C | | | | Свойства | | | | | 3anpoc | | | | | $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$ | | | | | ∞
□ Добавить в обзор | Ctrl+Shift+0 | | | | ₩ Добавить все в обзор | | | | | ∞′′
[©] Удалить все из обзора | | | | | Показать все слои | Ctrl+Shift+U | | | | Скрыть все слои | Ctrl+Shift+H | | | ### **7.1.6 У**становки | Пункт меню | Комбинация | Справка | Панель | |---------------------------------------|--------------|--|--------------| | | клавиш | | инструментов | | Π анели $ ightarrow$ | | см. Панели инструментов | | | Панели инструментов | | см. Панели инструментов | | | \rightarrow | | | | | Полноэкранный режим | F 11 | | | | Свойства | Ctrl+Shift+P | см. Проекты | | | $npoe\kappa ma$ | | | | | 🐯 Ввод системы | | см. Пользовательские системы | | | $\kappa oop extstyle du u a m \dots$ | | координат | | | Управление стилями | | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | | | 🔪 Комбинации | | | | | клавиш | | | | | 🔧 Настройка | | см. Настройка интерфейса | | | интерфеса | | | | | <i>№ Параметры</i> | | см. Параметры | | | Πapa м emp ы | | | | | прилипания | | | | # 7.1.7 Модули | Пункт меню | Комбинация клавиш | Справка | Панель инструментов | |---------------------------------------|-------------------|-----------------------|---------------------| | Управление модулями
Консоль Python | | см. The Plugins Menus | | При первом запуске QGIS активированы не все модули ядра. # 7.1.8 Вектор | Пункт меню | Комбинация | Справка | Панель | |-------------------------------------|------------|-------------------------------------|--------------| | | клавиш | | инструментов | | $Open \ Street \ Map \rightarrow$ | | см Загрузка данных
OpenStreetMap | | | $igg = Analysis \ Tools ightarrow$ | | see Moдуль fTools | | | $Research\ Tools \rightarrow$ | | see Moдуль fTools | | | Geoprocessing Tools | | see Moдуль fTools | | | \rightarrow | | | | | $Geometry\ Tools \rightarrow$ | | see Modyno fTools | | | Data Management | | see Moдуль fTools | | | $Tools \rightarrow$ | | | | При первом запуске QGIS активированы не все модули ядра. # 7.1.9 Растр | Пункт меню | Комбинация клавиш | Справка | Панель инструментов | |-----------------------------|-------------------|-------------------------|---------------------| | $Raster\ calculator\ \dots$ | | see Калькулятор растров | | При первом запуске QGIS активированы не все модули ядра. 7.1. Главное меню 29 #### 7.1.10 Анализ | Пункт меню | Комбинация | Справка | Панель | |---------------------------|------------|---|--------------| | | клавиш | | инструментов | | ‡ Панель | | см. Панель инструментов | | | инструментов | | | | | 🤻 Редактор моделей | | см. Редактор моделей | | | History and log | | см. Журнал | | | Ж Параметры | | см. Настройка платформы
геообработки | | | № Просмотр | | см. Настройка сторонних | | | результатов | | приложений | | | >> Командная | Ctrl+Alt+M | см. The SEXTANTE Commander | | | $cmpo\kappa a$ | | | | При первом запуске QGIS активированы не все модули ядра. ### 7.1.11 Справка | Пункт меню | Комбинация клавиш | Справка | Панель инструментов | |--------------------------|-------------------|---------|---------------------| | Содержание | F1 | | Справка | | ₩ Что это? | Shift+F1 | | Справка | | АРІ-документация | | | | | Need commercial support? | | | | | ₩ QGIS Home Page | Ctrl+H | | | | Check QGIS Version | | | | | 🦊 Ø программе | | | | | QGIS Sponsors | | | | Please note that for Linux $\stackrel{\triangle}{\omega}$, the menu bar items listed above are the default ones in the KDE window manager. In GNOME, the *Settings* menu has different content and its items have to be found here: # 7.2 Панель инструментов The toolbar provides access to most of the same functions as the menus, plus additional tools for interacting with the map. Each toolbar item has pop-up help available. Hold your mouse over the item and a short description of the tool's purpose will be displayed. Every menu bar can be moved around according to your needs. Additionally, every menu bar can be switched off using your right mouse button context menu, holding the mouse over the toolbars (read also Π ahenu uнструментов). #### Совет: Восстановление панелей инструментов If you have accidentally hidden all your toolbars, you can get them back by choosing menu option $Settings \rightarrow Toolbars \rightarrow$. If a toolbar disappears under Windows, which seems to be
a problem in QGIS from time to time, you have to remove key \HKEY_CURRENT_USER\Software\QGIS\qgis\UI\state in the registry. When you restart QGIS, the key is written again with the default state, and all toolbars are visible again. # 7.3 Легенда The map legend area lists all the layers in the project. The checkbox in each legend entry can be used to show or hide the layer. A layer can be selected and dragged up or down in the legend to change the Z-ordering. Z-ordering means that layers listed nearer the top of the legend are drawn over layers listed lower down in the legend. Примечание: This behaviour can be overridden by the 'Layer order' panel. Layers in the legend window can be organised into groups. There are two ways to do this: - 1. Right click in the legend window and choose Add New Group. Type in a name for the group and press Enter. Now click on an existing layer and drag it onto the group. - 2. Select some layers, right click in the legend window and choose *Group Selected*. The selected layers will automatically be placed in a new group. To bring a layer out of a group, you can drag it out, or right click on it and choose *Make to toplevel item*. Groups can also be nested inside other groups. Флажок возле имени группы даёт возможность переключать видимость всех слоев в группе одним действием. The content of the right mouse button context menu depends on whether the selected legend item is a raster or a vector layer. For GRASS vector layers, $\int_{-Toggle\ editing}^{Toggle\ editing}$ is not available. See section $Ouu\phi poeka$ u npaeka sekmophux choës GRASS for information on editing GRASS vector layers. #### Контекстное меню для растровых слоев - Увеличить до границ слоя - Увеличить до наилучшего масштаба (100%) - Растянуть значения по текущему охвату - Показать в обзоре - Удалить - Дублировать - Изменить систему координат - Выбрать систему координат слоя для проекта - Сохранить как... - Свойства - Переименовать - Копировать стиль - Add New Group 7.3. Легенда 31 - Expand all - Collapse all - ullet Update Drawing Order Дополнительно, в зависимости от положения слоя - Сделать элементом первого уровня - Сгруппировать выделенное ### Контекстное меню для векторных слоев - Увеличить до границ слоя - Показать в обзоре - Удалить - Дублировать - Изменить систему координат - Выбрать систему координат слоя для проекта - Открыть таблицу атрибутов - Режим редактирования (недоступен для слоёв GRASS) - Сохроанить как... - Save Selection As - Фильтр... - Показать количество объектов - Свойства - Переименовать - Копировать стиль - Add New Group - Expand all - Collapse all - Update Drawing Order Дополнительно, в зависимости от положения слоя - Сделать элементом первого уровня - Сгруппировать выделенное ### Контекстное меню для групп слоев - Увеличить до группы - Удалить - Изменить систему координат группы - Переименовать - Add New Group - Expand all - Collapse all - Update Drawing Order При зажатой клавише CTRL можно выделять несколько слоёв или групп одновременно. Это позволит переместить все выделенные слои из одной группы в другую. You may also delete more than one layer or group at once by selecting several layers with the Ctrl key and pressing Ctrl+D afterwards. This way, all selected layers or groups will be removed from the layers list. ## 7.3.1 Независящий от легенды порядок отрисовки There is a panel that allows you to define an independent drawing order for the map legend. You can activate it in the menu $Settings \rightarrow Panels \rightarrow Layer\ order$. This feature allows you to, for instance, order your layers in order of importance, but still display them in the correct order (see figure_layer_order). Checking the Control rendering order box underneath the list of layers will cause a revert to default behavior. Рис. 7.2: Независимый от легенды порядок отрисовки слоёв 🚨 # 7.4 Область карты This is the "business end" of QGIS — maps are displayed in this area! The map displayed in this window will depend on the vector and raster layers you have chosen to load (see sections that follow for more information on how to load layers). The map view can be panned, shifting the focus of the map display to another region, and it can be zoomed in and out. Various other operations can be performed on the map as described in the toolbar description above. The map view and the legend are tightly bound to each other — the maps in view reflect changes you make in the legend area. ### Совет: Масштабирование карты с помощью колеса мыши You can use the mouse wheel to zoom in and out on the map. Place the mouse cursor inside the map area and roll the wheel forward (away from you) to zoom in and backwards (towards you) to zoom out. The zoom is centered on the mouse cursor position. You can customize the behavior of the mouse wheel zoom using the $Map\ tools\ tab\ under\ the\ Settings \to Options\ menu.$ #### Совет: Панорамирование карты, используя клавиши со стрелками и клавишу пробела You can use the arrow keys to pan the map. Place the mouse cursor inside the map area and click on the right arrow key to pan east, left arrow key to pan west, up arrow key to pan north and down arrow key to pan south. You can also pan the map using the space bar or the click on mouse wheel: just move the mouse while holding down space bar or click on mouse wheel. # 7.5 Строка состояния The status bar shows you your current position in map coordinates (e.g., meters or decimal degrees) as the mouse pointer is moved across the map view. To the left of the coordinate display in the status bar is a small button that will toggle between showing coordinate position or the view extents of the map view as you pan and zoom in and out. Next to the coordinate display you will find the scale display. It shows the scale of the map view. If you zoom in or out, QGIS shows you the current scale. There is a scale selector, which allows you to choose between predefined scales from 1:500 to 1:1000000. A progress bar in the status bar shows the progress of rendering as each layer is drawn to the map view. In some cases, such as the gathering of statistics in raster layers, the progress bar will be used to show the status of lengthy operations. If a new plugin or a plugin update is available, you will see a message at the far left of the status bar. On the right side of the status bar, there is a small checkbox which can be used to temporarily prevent layers being rendered to the map view (see section *Pendepunz* below). The icon \nearrow immediately stops the current map rendering process. To the right of the render functions, you find the EPSG code of the current project CRS and a projector icon. Clicking on this opens the projection properties for the current project. ### Cobet: Calculating the Correct Scale of Your Map Canvas When you start QGIS, the default units are degrees, and this means that QGIS will interpret any coordinate in your layer as specified in degrees. To get correct scale values, you can either change this setting to meters manually in the *General* tab under *Settings* \rightarrow *Project Properties*, or you can select a project CRS clicking on the \bigcirc CRS status icon in the lower right-hand corner of the status bar. In the last case, the units are set to what the project projection specifies (e.g., '+units=m'). # Основные инструменты # 8.1 Комбинации клавиш QGIS provides default keyboard shortcuts for many features. You can find them in section $\Gamma_{\Lambda\alpha\beta\eta\rho\rho}$ Mehio. Additionally, the menu option $Settings \to Configure\ Shortcuts.$. allows you to change the default keyboard shortcuts and to add new keyboard shortcuts to QGIS features. Рис. 8.1: Настройка комбинаций клавиш 🚨 (Gnome) Configuration is very simple. Just select a feature from the list and click on [Change], [Set none] or [Set default]. Once you have finished your configuration, you can save it as an XML file and load it to another QGIS installation. # 8.2 Контекстная справка When you need help on a specific topic, you can access context help via the [Help] button available in most dialogs — please note that third-party plugins can point to dedicated web pages. # 8.3 Рендеринг By default, QGIS renders all visible layers whenever the map canvas is refreshed. The events that trigger a refresh of the map canvas include: • добавление слоя - панорамирование или масштабирование - изменение размеров окна QGIS - включение или отключение слоя/слоёв в легенде В ряде случаев QGIS позволяет контролировать процесс отрисовки. ### 8.3.1 Видимость в пределах масштаба Scale-dependent rendering allows you to specify the minimum and maximum scales at which a layer will be visible. To set scale-dependent rendering, open the *Properties* dialog by double-clicking on the layer in the legend. On the *General* tab, click on the Scale dependent visibility checkbox to activate the feature, then set the minimum and maximum scale values. Значения масштабов можно задать по первому масштабированию слоя, который вы хотите использовать, отмечая значение масштаба в строке состояния QGIS. # 8.3.2 Управление отрисовкой карты Map rendering can be controlled in the various ways, as described below. #### Приостановка отрисовки To suspend rendering, click the $\[\]$ Render checkbox in the lower right corner of the status bar. When the $\[\]$ Render checkbox is not checked, QGIS does not redraw the canvas in response to any of the events described in section Pendepunz. Examples of when you might want to suspend rendering include: - Adding many layers and symbolizing them prior to drawing - Adding one or more large layers and setting scale dependency before drawing - Adding one or more large layers and zooming to a specific view before drawing - комбинации вышеперечисленного Включение флажка *Month Ompucoвка* активирует отрисовку и немедленно обновляет содержимое карты. #### Добавление невидимых слоёв You can set an option to always load new layers without drawing
them. This means the layer will be added to the map, but its visibility checkbox in the legend will be unchecked by default. To set this option, choose menu option $Settings \to Options$ and click on the Rendering tab. Uncheck the By default new layers added to the map should be displayed checkbox. Any layer subsequently added to the map will be off (invisible) by default. ### Отмена отрисовки Чтобы остановить отрисовку карты нажмите ESC. Обновление карты будет отменено и она останется частично отрисованной. Между нажатием клавиши ESC и остановкой отрисовки может пройти некоторое время. Примечание: It is currently not possible to stop rendering — this was disabled in the Qt4 port because of User Interface (UI) problems and crashes. #### Обновление окна карты во время отрисовки You can set an option to update the map display as features are drawn. By default, QGIS does not display any features for a layer until the entire layer has been rendered. To update the display as features are read from the datastore, choose menu option $Settings \rightarrow Options$ and click on the Rendering tab. Set the feature count to an appropriate value to update the display during rendering. Setting a value of 0 disables update during drawing (this is the default). Setting a value too low will result in poor performance, as the map canvas is continually updated during the reading of the features. A suggested value to start with is 500. #### Регулирование качества отрисовки To influence the rendering quality of the map, you have two options. Choose menu option $Settings \rightarrow Options$, click on the Rendering tab and select or deselect following checkboxes: - 🌌 Рисовать сглаженные линии (снижает скорость отрисовки) - 🌌 Исправлять ошибки заливки полигонов #### Speed-up rendering There are two settings that allow you to improve rendering speed. Open the QGIS options dialog using $Settings \rightarrow Options$, go to the Rendering tab and select or deselect the following checkboxes: - Enable back buffer. This provides better graphics performance at the cost of losing the possibility to cancel rendering and incrementally draw features. If it is unchecked, you can set the Number of features to draw before updating the display, otherwise this option is inactive. - **U**se render caching where possible to speed up redraws # 8.4 Измерения Measuring works within projected coordinate systems (e.g., UTM) and unprojected data. If the loaded map is defined with a geographic coordinate system (latitude/longitude), the results from line or area measurements will be incorrect. To fix this, you need to set an appropriate map coordinate system (see section Paboma c npoekuunu). All measuring modules also use the snapping settings from the digitizing module. This is useful, if you want to measure along lines or areas in vector layers. To select a measuring tool, click on and select the tool you want to use. ### 8.4.1 Измерение длин, площадей и углов Measure Line: QGIS is able to measure real distances between given points according to a defined ellipsoid. To configure this, choose menu option $Settings \to Options$, click on the $Map\ tools$ tab and select the appropriate ellipsoid. There, you can also define a rubberband color and your preferred measurement units (meters or feet) and angle units (degrees, radians and gon). The tool then allows you to click points on the map. Each segment length, as well as the total, shows up in the measure window. To stop measuring, click your right mouse button. Measure Area: Areas can also be measured. In the measure window, the accumulated area size appears. In addition, the measuring tool will snap to the currently selected layer, provided that layer has its snapping tolerance set (see section *Hacmpoŭкa порога прилипания и радиуса поиска*). So, if you want to measure exactly along a line feature, or around a polygon feature, first set its snapping tolerance, then 8.4. Измерения 37 Рис. 8.2: Измерение расстояний 🚨 (Gnome) select the layer. Now, when using the measuring tools, each mouse click (within the tolerance setting) will snap to that layer. Рис. 8.3: Измерение площадей 🚨 (Gnome) Measure Angle: You can also measure angles. The cursor becomes cross-shaped. Click to draw the first segment of the angle you wish to measure, then move the cursor to draw the desired angle. The measure is displayed in a pop-up dialog. Рис. 8.4: Измерение углов 🚨 (Gnome) # 8.4.2 Выбор объектов The QGIS toolbar provides several tools to select features in the map canvas. To select one or several features, just click on and select your tool: - Выделить отдельный объект - Выделить объекты прямоугольником - 📈 Выделить объекты полигоном - Выделить объекты произвольной линией - 🕟 Выделить объекты в радиусе Снять выделение с объектов можно нажав на кнопку Снять выделение во всех слоях. # 8.5 Определение объектов The Identify tool allows you to interact with the map canvas and get information on features in a pop-up window. To identify features, use $View \to Identify$ features or press Ctrl + Shift + I, or click on the \bigcirc Identify features icon in the toolbar. If you click on several features, the *Identify results* dialog will list information about all the selected features. The first item is the number of the feature in the list of results, followed by the layer name. Then, its first child will be the name of a field with its value. Finally, all information about the feature is displayed. This window can be customized to display custom fields, but by default it will display three kinds of information: - Actions: Actions can be added to the identify feature windows. When clicking on the action label, action will be run. By default, only one action is added, to view feature form for editing. - Derived: This information is calculated or derived from other information. You can find clicked coordinate, X and Y coordinates, area in map units and perimeter in map units for polygons, length in map units for lines and feature ids. - Data attributes: This is the list of attribute fields from the data. Рис. 8.5: Диалог «Результат определения» 🚨 (Gnome) At the bottom of the window, you have five icons: - Развернуть всё - Свернуть всё - 🗼 🚚 Раскрывать результаты автоматически - 😱 📄 Копировать выделенный объект в буфер обмена - 😱 🛑 Распечатать веб-страницу Other functions can be found in the context menu of the identified item. For example, from the context menu you can: - View the feature form - Увеличить до объекта - Copy feature: Copy all feature geometry and attributes - Copy attribute value: Copy only the value of the attribute that you click on - Copy feature attributes: Copy only attributes - Clear result: Remove results in the window - Clear highlights: Remove features highlighted on the map - Подсветить всё - Подсветить всё в слое - Activate layer: Choose a layer to be activated - Layer properties: Open layer properties window - Развернуть всё - Свернуть всё # 8.6 Оформление The Decorations of QGIS include the Grid, the Copyright Label, the North Arrow and the Scale Bar. They are used to 'decorate' the map by adding cartographic elements. ### 8.6.1 Сетка Grid allows you to add a coordinate grid and coordinate annotations to the map canvas. Рис. 8.6: Диалог «Сетка» 🚨 - 1. Выберите пункт меню $Bu\partial \to O\phi$ ормление $\to Cem\kappa a$. Откроется диалог (см. figure decorations 1). - 2. Активируйте флажок 🌌 Включить сетку и настройте её параметры. - 3. Активируйте флажок 🌌 Аннотация и настройте отображение подписей координат. - 4. Click [Apply] to verify that it looks as expected. - 5. Нажмите [ОК] чтобы закрыть диалог. ### 8.6.2 Знак авторского права Gopyright label adds a copyright label using the text you prefer to the map. Рис. 8.7: The Copyright Dialog 🛆 - 1. Выберите пункт меню $Bud \to O\phi$ ормление $\to 3$ нак авторского права. Откроется диалог (см. figure_decorations_2). - 2. Enter the text you want to place on the map. You can use HTML as shown in the example. - 3. Choose the placement of the label from the *Placement* combo box. - 4. Make sure the **Enable Copyright Label** checkbox is checked. - 5. Click [**OK**]. In the example above, which is the default, QGIS places a copyright symbol followed by the date in the lower right-hand corner of the map canvas. #### 8.6.3 Указатель «север-юг» A North Arrow places a simple north arrow on the map canvas. At present, there is only one style available. You can adjust the angle of the arrow or let QGIS set the direction automatically. If you choose to let QGIS determine the direction, it makes its best guess as to how the arrow should be oriented. For placement of the arrow, you have four options, corresponding to the four corners of the map canvas. Рис. 8.8: Диалог «Указатель "север-юг"» 🗘 8.6. Оформление 41 ### 8.6.4 Масштабная линейка Scale Bar adds a simple scale bar to the map canvas. You can control the style and placement, as well as the labeling of the bar. Рис. 8.9: Диалог «масштабная линейка» 🚨 QGIS only supports displaying the scale in the same units as your map frame. So if the units of your layers are in meters, you can't create a scale bar in feet. Likewise, if you are using decimal degrees, you can't create a scale bar to display distance in meters. Для добавления масштабной линейки: - 1. Select from menu $View \to Decorations \to Scale\ Bar$. The dialog starts (see figure decorations 4). - 2. Choose the placement from the *Placement* combo box. - 3. Choose the style from the Scale bar style combo box. - 4. Select the color for the bar *Color of bar* Border color Change or use the default black color. - 5. Set the size of the bar and its label Size of bar 1,00 \$. - 6. Make sure the Enable scale bar checkbox is checked. - 7. Optionally, check Automatically snap to round number on resize. - 8. Click [OK]. #### Совет: Настройки оформления When you save a .qgs project, any changes you have made to Grid, North Arrow, Scale Bar and Copyright will be
saved in the project and restored the next time you load the project. # 8.7 Инструменты аннотации The Text Annotation tool in the attribute toolbar provides the possibility to place formatted text in a balloon on the QGIS map canvas. Use the Text Annotation tool and click into the map canvas. Double clicking on the item opens a dialog with various options. There is the text editor to enter the formatted text and other item settings. For instance, there is the choice of having the item placed on a map position (displayed by a marker symbol) or to have the item on a screen position (not related to Рис. 8.10: Диалог текстовой аннотации 🚨 the map). The item can be moved by map position (by dragging the map marker) or by moving only the balloon. The icons are part of the GIS theme, and they are used by default in the other themes, too. The Move Annotation tool allows you to move the annotation on the map canvas. ## 8.7.1 HTML-аннотация The Html Annotation tools in the attribute toolbar provides the possibility to place the content of an html file in a balloon on the QGIS map canvas. Using the *Html Annotation* tool, click into the map canvas and add the path to the html file into the dialog. ### 8.7.2 SVG-аннотация The SVG Annotation tool in the attribute toolbar provides the possibility to place an SVG symbol in a balloon on the QGIS map canvas. Using the SVG Annotation tool, click into the map canvas and add the path to the SVG file into the dialog. ### 8.7.3 Диалоговая аннотация Additionally, you can also create your own annotation forms. The Form Annotation tool is useful to display attributes of a vector layer in a customized Qt Designer form (see figure_custom_annotation). This is similar to the designer forms for the *Identify features* tool, but displayed in an annotation item. Also see this video https://www.youtube.com/watch?v=0pDBuSbQ02o from Tim Sutton for more information. **Примечание:** Нажатие Ctrl+T при активном инструменте аннотаций (переместить аннотацию, текстовая аннотация, диалоговая аннотация), инвертирует видимость существующих аннотаций. Рис. 8.11: Пользовательская форма аннотации 🚨 # 8.8 Пространственные закладки Пространственные закладки позволяют создавать своеобразные «закладки» географического положения и возвращаться к ним позднее. ### 8.8.1 Создание закладки Для создания закладки: - 1. Масштабируйте или панорамируйте карту до интересующей вас территории. - 2. Выберите пункт меню $Bu d \to Hoвая$ закладка или нажмите Ctrl-B. - 3. введите описательное имя для закладки (до 255 символов) - 4. Нажмите Enter, чтобы добавить закладку, или [Удалить] для удаления существующей закладки Помните, что можно иметь множество закладок с одинаковыми названиями. ### 8.8.2 Работа с закладками To use or manage bookmarks, select the menu option $View \rightarrow Show\ Bookmarks$. The Geospatial Bookmarks dialog allows you to zoom to or delete a bookmark. You cannot edit the bookmark name or coordinates. # 8.8.3 Просмотр закладки В диалоговом окне Пространственные закладки, выберите необходимую закладку, нажав на неё, затем нажмите кнопку [Увеличить до]. Также можно просмотреть закладку, дважды нажав на неё. ### 8.8.4 Удаление закладки To delete a bookmark from the *Geospatial Bookmarks* dialog, click on it, then click [**Delete**]. Confirm your choice by clicking [**Yes**], or cancel the delete by clicking [**No**]. # 8.9 Встраиваемые проекты If you want to embed content from other project files into your project, you can choose $Layer \rightarrow Embed$ Layers and Groups. # 8.9.1 Встраивание слоёв The following dialog allows you to embed layers from other projects. Here is a small example: - 1. Нажмите кнопку , чтобы указать другой проект из набора данных «Аляска». - 2. Select the project file grassland. You can see the content of the project (see figure _ embed _ dialog). - 3. Press Ctrl and click on the layers grassland and regions. Press [OK]. The selected layers are embedded in the map legend and the map view now. Рис. 8.12: Выбор слоёв и групп для встраивания 🛆 While the embedded layers are editable, you can't change their properties like style and labeling. ### 8.9.2 Removing embedded layers Вызовите контекстное меню встроенного слоя и выберите 🔲 Удалить. # Hастройка QGIS QGIS is highly configurable through the Settings menu. Choose between Panels, Toolbars, Project Properties, Options and Customization. # 9.1 Панели инструментов In the $Panels \rightarrow \text{menu}$, you can switch on and off QGIS widgets. The $Toolbars \rightarrow \text{menu}$ provides the possibility to switch on and off icon groups in the QGIS toolbar (see figure panels toolbars). Рис. 9.1: Меню «Панели инструментов» 🚨 #### Совет: Обзорная карта In QGIS, you can use an overview panel that provides a full extent view of layers added to it. It can be selected under the menu \triangle Settings \rightarrow Panels or \nearrow View \rightarrow Panels. Within the view is a rectangle showing the current map extent. This allows you to quickly determine which area of the map you are currently viewing. Note that labels are not rendered to the map overview even if the layers in the map overview have been set up for labeling. If you click and drag the red rectangle in the overview that shows your current extent, the main map view will update accordingly. ### Совет: Отладочные сообщения It's possible to track the QGIS messages. You can activate $\[\]$ Log Messages in the menu $\[\]$ Settings \rightarrow Panels or $\[\]$ View \rightarrow Panels and follow the messages that appear in the different tabs during loading and operation. # 9.2 Свойства проекта In the properties window for the project under \triangle Settings \rightarrow Project Properties or \triangleleft Project \rightarrow Project Properties, you can set project-specific options. These include: - In the General menu, the project title, selection and background color, layer units, precision, and the option to save relative paths to layers can be defined. If the CRS transformation is on, you can choose an ellipsoid for distance calculations. You can define the canvas units (only used when CRS transformation is disabled) and the precision of decimal places to use. You can also define a project scale list, which overrides the global predefined scales. - Вкладка Система координат позволяет выбрать систему координат для данного проекта и включить преобразование координат векторных и растровых слоёв «на лету», если используются слои с разными системами координат. - With the third *Identify layers* menu, you set (or disable) which layers will respond to the identify tool (see the "Map tools" paragraph from the *Параметры* section to enable identifying of multiple layers). - The *Default Styles* menu lets you control how new layers will be drawn when they do not have an existing .qml style defined. You can also set the default transparency level for new layers and whether symbols should have random colours assigned to them. - The tab *OWS Server* allows you to define information about the QGIS Server WMS and WFS capabilities, extent and CRS restrictions. - The *Macros* menu is used to edit Python macros for projects. Currently, only three macros are available: openProject(), saveProject() and closeProject(). - The *Relations* menu is used to define 1:n relations. The relations are defined in the project properties dialog. Once relations exist for a layer, a new user interface element in the form view (e.g. when identifying a feature and opening its form) will list the related entities. This provides a powerful way to express e.g. the inspection history on a length of pipeline or road segment. You can find out more about 1:n relations support in Section *Creating one to many relations*. # 9.3 Параметры Some basic options for QGIS can be selected using the *Options* dialog. Select the menu option $Settings \rightarrow Options$. The tabs where you can customize your options are described below. ### 9.3.1 Владка «Общие» #### Приложение • Select the Style (QGIS restart required) and choose between 'Oxygen', 'Windows', 'Motif', 'CDE', 'Plastique' and 'Cleanlooks' (\triangle). Рис. 9.2: Настройка макросов в QGIS - Задать *Тема значков* . Доступна только тема «default». - Настроить Размер значков - Define the Font. Choose between Qt default and a user-defined font. - Изменить Время показа диалогов и сообщений состояния 💷 . - 🌌 Не показывать заставку при запуске - 🌌 Показывать совет дня при запуске - 🔹 🌌 Выделять заголовки групп виджетов - 🌌 Оформлять группы виджетов в стиле QGIS - 🌌 Изменять цвета в реальном времени ### Файлы проектов - Open project on launch (choose between 'New', 'Most recent' and 'Specific'). When choosing 'Specific' use the to define a project. - Create new project from default project. You have the possibility to press on Set current project as default or on Reset default. You can browse through your files and define a directory where you find your user-defined project templates. This will be added to Project \rightarrow New From Template. If you first activate Create new project from default project and then save a project in the project templates folder. - 🌌 Запрашивать сохранение изменений в проекте и источниках данных, когда это необходимо - Marn when opening a project file saved with an older version of QGIS - Enable macros . This option was created to handle macros that are written to perform an action on project events. You can choose between 'Never', 'Ask', 'For this session only' and 'Always (not recommended)'. 9.3. Параметры 49 # 9.3.2 Вкладка «Система» #### Переменные среды System environment variables can now be viewed, and many configured, in the **Environment** group (see figure_environment_variables). This is useful for platforms, such as Mac, where a GUI application does not necessarily inherit the user's shell environment. It's also useful for setting and viewing environment variables for the external tool sets controlled
by the Processing toolbox (e.g., SAGA, GRASS), and for turning on debugging output for specific sections of the source code. • W Use custom variables (restart required - include separators). You can [Add] and [Remove] variables. Already-defined environment variables are displayed in Current environment variables, and it's possible to filter them by activating Show only QGIS-specific variables. Рис. 9.3: Просмотр переменных окружения в QGIS #### Модули [Add] or [Remove] Path(s) to search for additional C++ plugin libraries ### 9.3.3 Вкладка «Источники данных» ### Таблица атрибутов • 🌌 Открывать таблицу аттрибутов во встраиваемом окне (требуется перезапуск) - Copy geometry in WKT representation from attribute table. When using copy selected rows to clipboard from the Attribute table dialog, this has the result that the coordinates of points or vertices are also copied to the clipboard. - Attribute table behaviour . There are three possibilities: 'Show all features', 'Show selected features' and 'Show features visible on map'. - Attribute table row cache 1,00 \$\frac{1}{2}\$. This row cache makes it possible to save the last loaded N attribute rows so that working with the attribute table will be quicker. The cache will be deleted when closing the attribute table. - Representation for NULL values. Here, you can define a value for data fields containing a NULL value. ### Источники данных - Искать источники данных в панели обозревателя . Предлагается два метода: «По расширению» и «По содержимому». - Scan for contents of compressed files (.zip) in browser dock . 'No', 'Basic scan' and 'Full scan' are possible. - Prompt for raster sublayers when opening. Some rasters support sublayers they are called subdatasets in GDAL. An example is netCDF files if there are many netCDF variables, GDAL sees every variable as a subdataset. The option allows you to control how to deal with sublayers when a file with sublayers is opened. You have the following choices: - 'Always': Always ask (if there are existing sublayers) - 'If needed': Ask if layer has no bands, but has sublayers - 'Never': Never prompt, will not load anything - 'Load all': Never prompt, but load all sublayers - Ignore shapefile encoding declaration. If a shapefile has encoding information, this will be ignored by QGIS. - 🌌 Добавлять слои PostGIS двойным щелчком и включить расширенную выборку - 🌌 Добавлять слои Oracle двойным щелчком и включить расширенную выборку ### 9.3.4 Вкладка «Отрисовка» #### Rendering behaviour - **M** By default new layers added to the map should be displayed - **Enable** back buffer - We render caching where possible to speed up redraws - Enable feature simplication by default for newly added layers - Simplify on provider side if possible # Параметры отрисовки - 🌌 Рисовать сглаженные линии (снижает скорость отрисовки) - Fix problems with incorrectly filled polygons # Растры • With RGB band selection, you can define the number for the Red, Green and Blue band. 9.3. Параметры 51 #### Contrast enhancement - Single band gray . A single band gray can have 'No stretch', 'Stretch to MinMax', 'Stretch and Clip to MinMax' and also 'Clip to MinMax'. - Multi band color (byte/band) Detions are 'No stretch', 'Stretch to MinMax', 'Stretch and Clip to MinMax' and 'Clip to MinMax'. - Multi band color (>byte/band) . Options are 'No stretch', 'Stretch to MinMax', 'Stretch and Clip to MinMax' and 'Clip to MinMax'. - Limits (minimum/maximum) . Options are 'Cumulative pixel count cut', 'Minimum/Maximum', 'Mean +/- standard deviation'. - Границы среза с накоплением - Множитель стандартного отклонения #### Отладка • Map canvas refresh ### 9.3.5 Вкладка «Карта и легенда» #### Внешний вид по умолчанию • Установить Цвет выделения Вогdег color □ Change и Цвет фона Вогdег color □ Change #### Легенда - По двойному щелчку на слое в легенде Можно открывать свойства слоя или открывать таблицу атрибутов. - The following Legend item styles are possible: - 🌌 Выводить имена слоёв с прописной буквы - 🌌 Выделять слои полужирным шрифтом - 🌌 Выделять группы полужирным шрифтом - 🌌 Показывать в легенде атрибуты классификации - 🗹 Создавать значки для растровых слоёв - 🌌 Добавлять новые слои в выбранную или текущую группу # 9.3.6 Вкладка «Инструменты» ### Identify - Modern Open identify results in a dock window (QGIS restart required) - The *Mode* setting determines which layers will be shown by the Identify tool. By switching to 'Top down' or 'Top down, stop at first' instead of 'Current layer', attributes for all identifiable layers will be shown with the Identify tool. In QGIS 2.2. you can now use a 'Layer selection' option so that you can choose with the left-mouse menu which layer you want to identify (see the "Project properties" section under *Ippoermu* to set which layers are identifiable). - M Open feature form, if a single feature is identified • Define Search radius for identifying and displaying map tips as a percentage of the map width #### Инструмент измерений - Установить Цвет линии для инструментов измерений - Установить число Десятичных знаков - 🗹 Сохранять базовые единицы - Preferred measurements units ('Meters', 'Feet', 'Nautical Miles' or 'Degrees')' - Preferred angle units ('Degrees', 'Radians' or 'Gon') ### Прокрутка и масштабирование - Задать Действие при прокрутке колеса мыши («Увеличить», «Увеличить и центрировать», «Увеличить в положении курсора», «Ничего») - Установить Фактор увеличения для колеса мыши #### Масштабный ряд Here, you find a list of predefined scales. With the [+] and [-] buttons you can add or remove your individual scales. ### 9.3.7 Composer Menu ### Composition defaults You can define the *Default* font here. #### Grid appearance - Define the *Grid style* ('Solid', 'Dots', 'Crosses') - Define the Color... #### Grid defaults - Define the Spacing 1,00 \$ - Define the Grid offset 1,00 of for x and y - Define the Snap tolerance 1,00 \$ #### Guide defaults • Define the Snap tolerance 1,00 \$ ## 9.3.8 Вкладка «Оцифровка» #### Создание объектов - 🌌 Отключить всплывающее окно ввода атрибутов для каждого создаваемого объекта - 🌌 Использовать последние введённые значения - Validate geometries. Editing complex lines and polygons with many nodes can result in very slow rendering. This is because the default validation procedures in QGIS can take a lot of time. To speed up rendering, it is possible to select GEOS geometry validation (starting from GEOS 3.3) or to switch it off. GEOS geometry validation is much faster, but the disadvantage is that only the first geometry problem will be reported. ### Резиновая нить 9.3. Параметры 53 • Установить Толщину линии 1,00 🕏 и Цвет линии Вогder color _____ Change для «резиновой нити» #### Прилипание - 🌌 Открывать параметры прилипания во встраиваемом окне (требуется перезапуск) - Установить *Режим прилипания по умолчанию* («К вершинам», «К сегментам», «К вершинам и сегментам», «Выключена») - Установить Порог прилипания по умолчанию в единицах карты или пикселях - Установить *Радиус поиска для редактирования вершин* (в единицах карты или пикселях) # Маркеры вершин - 🌌 Показывать маркеры только для выбранных объектов - Установить *Стиль маркера* («Перекрестие» (по умолчанию), «Полупрозрачный круг» или «Без маркера») - Задать *Размер маркера* 1,00 \$. #### Параллельные кривые The next 3 options refer to the Offset Curve tool in *Дοπολημπωρημικ φυμκυμια οιμφροβκα*. Through the various settings, it is possible to influence the shape of the line offset. These options are possible starting from GEOS 3.3. - Join style - Quadrant segments - Miter limit #### 9.3.9 Вкладка «GDAL» GDAL is a data exchange library for raster files. In this tab, you can *Edit create options* and *Edit Pyramids Options* of the raster formats. Define which GDAL driver is to be used for a raster format, as in some cases more than one GDAL driver is available. ## 9.3.10 Вкладка «Система координат» #### Система координат для новых проектов - Don't enable 'on the fly' reprojection - • Automatically enable 'on the fly' reprojection if layers have different CRS - Enable 'on the fly' reprojection by default - Создавать новые проекты в указанной системе координат #### Система координат для новых слоёв This area allows you to define the action to take when a new layer is created, or when a layer without a CRS is loaded. - 🖭 Запрашивать систему координат - Использовать систему координат проекта - 🖭 Использовать указанную систему координат #### Default datum transformations - Mark for datum transformation when no default is defined - If you have worked with the 'on-the-fly' CRS transformation you can see the result of the transformation in the window below. You can find information about 'Source CRS' and 'Destination CRS' as well as 'Source datum transform' and 'Destination datum transform'. ### 9.3.11 Locale Menu - 🌌 Переопределить системный язык и Язык, используемый вместо системного - Дополнительная информация о системном языке #### 9.3.12 Network Menu #### Обшие - Задать $A \partial pec$ noucka WMS-cepsepos,по умолчанию используется http://geopole.org/wms/search?search=\%1\&type=rss - Установить Таймаут для сетевых запросов (мс). Значение по умолчанию 60000 - Настроить *Время актуальности данных WMS-C/WMTS по умолчанию (часы)*. Значение по умолчанию 24 часа. - Define Max retry in case of tile request errors - Define *User-Agent* #### Параметры кэширования Задать Каталог и Размер кэша. - *Использовать прокси-сервер для внешних соединений* и настроить поля «Узел», «Порт», «Пользователь», и «Пароль». - Установить *Тип прокси* В соответствии с конфигурацией сети. - Default Proxy: прокси определяется настройками приложения - Socks5Proxy: Общий прокси для любого вида связи. Поддерживаются TCP, UDP, привязка к порту (входящие соединения) и авторизация - *HttpProxy*: реализован с использованием команды «CONNECT», поддерживает только исходящие TCP соединения; поддерживает авторизацию - HttpCachingProxy: Implemented using normal HTTP commands, it is useful
only in the context of HTTP requests. - $-\ Ftp \ Caching Proxy.$ Implemented using an FTP proxy, it is useful only in the context of FTP requests. Excluding some URLs can be added to the text box below the proxy settings (see Figure Network Tab). If you need more detailed information about the different proxy settings, please refer to the manual of the underlying QT library documentation at http://doc.trolltech.com/4.5/qnetworkproxy.html#ProxyType-enum. ## Совет: Использование прокси-серверов Using proxies can sometimes be tricky. It is useful to proceed by 'trial and error' with the above proxy types, to check to see if they succeed in your case. 9.3. Параметры 55 Рис. 9.4: Настройка прокси-сервера в QGIS Можно настроить параметры в соответствии со своими потребностями. Внесение некоторых изменений может потребовать перезапуска QGIS для их применения. - Description Settings are saved in a text file: \$HOME/.config/QGIS/qgis.conf - X You can find your settings in: \$HOME/Library/Preferences/org.qgis.qgis.plist - Settings are stored in the registry under: HKEY\CURRENT_USER\Software\QGIS\qgis # 9.4 Настройка интерфейса The customization tool lets you (de)activate almost every element in the QGIS user interface. This can be very useful if you have a lot of plugins installed that you never use and that are filling your screen. Рис. 9.5: Диалог «Настройка интерфейса» 🚨 QGIS Customization is divided into five groups. In Menus, you can hide entries in the Menu bar. In Panel, you find the panel windows. Panel windows are applications that can be started and used as a floating, top-level window or embedded to the QGIS main window as a docked widget (see also Haheru uncmpymenmos). In the Status Bar, features like the coordinate information can be deactivated. In Toolbars, you can (de)activate the toolbar icons of QGIS, and in Widgets, you can (de)activate dialogs as well as their buttons. With Switch to catching widgets in main application, you can click on elements in QGIS that you want to be hidden and find the corresponding entry in Customization (see figure_customization). You can also save your various setups for different use cases as well. Before your changes are applied, you need to restart QGIS. # Работа с проекциями QGIS allows users to define a global and project-wide CRS (coordinate reference system) for layers without a pre-defined CRS. It also allows the user to define custom coordinate reference systems and supports on-the-fly (OTF) projection of vector and raster layers. All of these features allow the user to display layers with different CRSs and have them overlay properly. # 10.1 Обзор поддержки проекций QGIS has support for approximately 2,700 known CRSs. Definitions for each CRS are stored in a SQLite database that is installed with QGIS. Normally, you do not need to manipulate the database directly. In fact, doing so may cause projection support to fail. Custom CRSs are stored in a user database. See section Π onb 30 вательские системы координат for information on managing your custom coordinate reference systems. The CRSs available in QGIS are based on those defined by the European Petroleum Search Group (EPSG) and the Institut Geographique National de France (IGNF) and are largely abstracted from the spatial reference tables used in GDAL. EPSG identifiers are present in the database and can be used to specify a CRS in QGIS. In order to use OTF projection, either your data must contain information about its coordinate reference system or you will need to define a global, layer or project-wide CRS. For PostGIS layers, QGIS uses the spatial reference identifier that was specified when the layer was created. For data supported by OGR, QGIS relies on the presence of a recognized means of specifying the CRS. In the case of shapefiles, this means a file containing the well-known text (WKT) specification of the CRS. This projection file has the same base name as the shapefile and a .prj extension. For example, a shapefile named alaska.shp would have a corresponding projection file named alaska.prj. Whenever you select a new CRS, the layer units will automatically be changed in the *General* tab of the *Project Properties* dialog under the *Project* (Gnome, OS X) or *Settings* (KDE, Windows) menu. # 10.2 Настройка системы координат по умолчанию QGIS starts each new project using the global default projection. The global default CRS is EPSG:4326 - WGS 84 (proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs), and it comes predefined in QGIS. This default can be changed via the [Select...] button in the first section, which is used to define the default coordinate reference system for new projects, as shown in figure_projection_1. This choice will be saved for use in subsequent QGIS sessions. When you use layers that do not have a CRS, you need to define how QGIS responds to these layers. This can be done globally or project-wide in the CRS tab under $Settings \rightarrow \$ Options. Ha рисунке figure projection 1 показаны возможные варианты: • Prompt for CRS Рис. 10.1: Вкладка «Система координат» в диалоге настройки QGIS Δ - Использовать систему координат проекта - Use default CRS displayed below If you want to define the coordinate reference system for a certain layer without CRS information, you can also do that in the *General* tab of the raster and vector properties dialog (see *General Menu* for rasters and *Общие* for vectors). If your layer already has a CRS defined, it will be displayed as shown in *Свойства векторного слоя*. #### Совет: Установка системы координат из списка слоёв Right-clicking on a layer in the Map Legend (section $\mathcal{I}erenda$) provides two CRS shortcuts. Set layer CRS takes you directly to the Coordinate Reference System Selector dialog (see figure_projection_2). Set project CRS from Layer redefines the project CRS using the layer's CRS. # 10.3 Перепроецирование «на лету» QGIS supports OTF reprojection for both raster and vector data. However, OTF is not activated by default. To use OTF projection, you must activate the $\[\]$ Enable on the fly CRS transformation checkbox in the CRS tab of the $\[\]$ Project Properties dialog. # There are three ways to do this: - 1. Выберите пункт $^{\sim}$ Свойства проекта в меню Проект (Gnome, OS X) или Установки (KDE, Windows). - 2. Click on the CRS status icon in the lower right-hand corner of the status bar. - 3. Turn OTF on by default in the CRS tab of the Options dialog by selecting Enable 'on the fly' reprojection by default or Automatically enable 'on the fly' reprojection if layers have different CRS If you have already loaded a layer and you want to enable OTF projection, the best practice is to open the CRS tab of the Project Properties dialog, select a CRS, and activate the Enable 'on the Ellipsi' Ellipsi The CRS tab of the $Project\ Properties$ dialog contains five important components, as shown in Figure projection 2 and described below: - 1. Enable 'on the fly' CRS transformation This checkbox is used to enable or disable OTF projection. When off, each layer is drawn using the coordinates as read from the data source, and the components described below are inactive. When on, the coordinates in each layer are projected to the coordinate reference system defined for the map canvas. - 2. **Filter** If you know the EPSG code, the identifier, or the name for a coordinate reference system, you can use the search feature to find it. Enter the EPSG code, the identifier or the name. - 3. Recently used coordinate reference systems If you have certain CRSs that you frequently use in your everyday GIS work, these will be displayed in this list. Click on one of these items to select the associated CRS. - 4. Coordinate reference systems of the world This is a list of all CRSs supported by QGIS, including Geographic, Projected and Custom coordinate reference systems. To define a CRS, select it from the list by expanding the appropriate node and selecting the CRS. The active CRS is preselected. - 5. **PROJ.4 text** This is the CRS string used by the PROJ.4 projection engine. This text is read-only and provided for informational purposes. Рис. 10.2: Свойста проекта 🚨 #### Совет: Диалоговое окно Свойства проекта If you open the $Project\ Properties$ dialog from the $Project\ menu$, you must click on the CRS tab to view the CRS settings. Opening the dialog from the CRS status icon will automatically bring the CRS tab to the front. # 10.4 Пользовательские системы координат If QGIS does not provide the coordinate reference system you need, you can define a custom CRS. To define a CRS, select **Custom CRS... from the Settings menu. Custom CRSs are stored in your QGIS user database. In addition to your custom CRSs, this database also contains your spatial bookmarks and other custom data. Defining a custom CRS in QGIS requires a good understanding of the PROJ.4 projection library. To begin, refer to "Cartographic Projection Procedures for the UNIX Environment - A User's Manual" by Gerald I. Evenden, U.S. Geological Survey Open-File Report 90-284, 1990 (available at ftp://ftp.remotesensing.org/proj/OF90-284.pdf). Данное руководство описывает использование proj.4 и связанных утилит командной строки. Картографичские параметры, используемые в proj.4, описаны в руководстве и совпадают с используемыми в QGIS. В диалоговом окне Определение пользовательской системы координат требуется всего два параметра для определения собственной проекции: - 1. A descriptive name - 2. The cartographic parameters in PROJ.4 format Рис. 10.3: Определение пользовательской системы координат 🚨 To create a new CRS, click the Add new CRS button and enter a descriptive name and the CRS parameters. Note that the *Parameters* must begin with a +proj= block, to represent the new coordinate reference system. You can test your CRS parameters to see if they give sane results. To do this, enter known WGS 84 latitude and longitude values in *North* and *East* fields,
respectively. Click on [Calculate], and compare the results with the known values in your coordinate reference system. # 10.5 Default datum transformations OTF depends on being able to transform data into a 'default CRS', and QGIS uses WGS84. For some CRS there are a number of transforms available. QGIS allows you to define the transformation used otherwise QGIS uses a default transformation. In the CRS tab under $Settings \rightarrow \mathcal{P}$ Options you can: - set QGIS to ask you when it needs define a transformation using Ask for datum transformation when no default is defined - edit a list of user defaults for transformations. QGIS asks which transformation to use by opening a dialogue box displaying PROJ.4 text describing the source and destination transforms. Further information may be found by hovering over a transform. User defaults can be saved by selecting Remember selection. . # Обозреватель QGIS The QGIS Browser is a panel in QGIS that lets you easily navigate in your filesystem and manage geodata. You can have access to common vector files (e.g., ESRI shapefiles or MapInfo files), databases (e.g., PostGIS, Oracle, SpatiaLite or MS SQL Spatial) and WMS/WFS connections. You can also view your GRASS data (to get the data into QGIS, see *Mumerpayum c GRASS GIS*). Рис. 11.1: QGIS browser as a stand alone application Δ Use the QGIS Browser to preview your data. The drag-and-drop function makes it easy to get your data into the map view and the map legend. - 1. Activate the QGIS Browser: Right-click on the toolbar and check $\blacksquare Browser$ or select it from $Settings \rightarrow Panels$. - 2. Drag the panel into the legend window and release it. - 3. Перейдите на вкладку Обозреватель. - 4. Browse in your filesystem and choose the shapefile folder from qgis_sample_data directory. - 5. Press the Shift key and select the airports.shp and alaska.shp files. - 6. Press the left mouse button, then drag and drop the files into the map canvas. - 7. Вызовите контекстное меню слоя и выберите *Выбрать систему координат слоя для проекта* (см. раздел *Работа с проекциями*). - 8. Нажмите кнопку 🄀 Полный охват чтобы в области карты отобразились все слои. There is a second browser available under $Settings \rightarrow Panels$. This is handy when you need to move files or layers between locations. - 1. Activate a second QGIS Browser: Right-click on the toolbar and check Browser (2), or select it from $Settings \rightarrow Panels$. - 2. Переместите панель на область легенды. - 3. Переключитесь на окно Обозреватель (2) и найдите необходимый shape-файл. - 4. Select a file with the left mouse button. Now you can use the Add Selected Layers icon to add it into the current project. QGIS automatically looks for the coordinate reference system (CRS) and zooms to the layer extent if you work in a blank QGIS project. If there are already files in your project, the file will just be added, and in the case that it has the same extent and CRS, it will be visualized. If the file has another CRS and layer extent, you must first right-click on the layer and choose Set Project CRS from Layer. Then choose Zoom to Layer Extent. The Filter files function works on a directory level. Browse to the folder where you want to filter files and enter a search word or wildcard. The Browser will show only matching filenames – other data won't be displayed. It's also possible to run the QGIS Browser as a stand-alone application. ### Start the QGIS browser - 🚨 в командной строке выполните qbrowser - 🎜 Start the QGIS Browser using the Start menu or desktop shortcut. - X The QGIS Browser is available from your Applications folder. In figure_browser_standalone_metadata, you can see the enhanced functionality of the stand-alone QGIS Browser. The *Param* tab provides the details of your connection-based datasets, like PostGIS or MSSQL Spatial. The *Metadata* tab contains general information about the file (see *Memadanhue*). With the *Preview* tab, you can have a look at your files without importing them into your QGIS project. It's also possible to preview the attributes of your files in the *Attributes* tab. . # Работа с векторными данными . # 12.1 Поддерживаемые форматы QGIS uses the OGR library to read and write vector data formats, including ESRI shapefiles, MapInfo and MicroStation file formats, AutoCAD DXF, PostGIS, SpatiaLite, Oracle Spatial and MSSQL Spatial databases, and many more. GRASS vector and PostgreSQL support is supplied by native QGIS data provider plugins. Vector data can also be loaded in read mode from zip and gzip archives into QGIS. As of the date of this document, 69 vector formats are supported by the OGR library (see OGR-SOFTWARE-SUITE in \mathcal{I} umepamypa u ccuaru na web-pecypcu). The complete list is available at http://www.gdal.org/ogr/ogr formats.html. Примечание: Not all of the listed formats may work in QGIS for various reasons. For example, some require external commercial libraries, or the GDAL/OGR installation of your OS may not have been built to support the format you want to use. Only those formats that have been well tested will appear in the list of file types when loading a vector into QGIS. Other untested formats can be loaded by selecting *.*. Работа с векторными данными в формате GRASS описана в разделе Интеграция с GRASS GIS. This section describes how to work with several common formats: ESRI shapefiles, PostGIS layers, SpatiaLite layers, OpenStreetMap vectors, and Comma Separated data (CSV). Many of the features available in QGIS work the same, regardless of the vector data source. This is by design, and it includes the identify, select, labeling and attributes functions. ## 12.1.1 Shape-файлы The standard vector file format used in QGIS is the ESRI shapefile. Support is provided by the OGR Simple Feature Library (http://www.gdal.org/ogr/). На самом деле, shape-файл состоит из нескольких файлов разных форматов. Из них три обязательны: - 1. .shp file containing the feature geometries - 2. .dbf file containing the attributes in dBase format - 3. .shx index file Shapefiles also can include a file with a .prj suffix, which contains the projection information. While it is very useful to have a projection file, it is not mandatory. A shapefile dataset can contain additional files. For further details, see the ESRI technical specification at http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. #### Добавление shape-файла к карте To load a shapefile, start QGIS and click on the Add Vector Layer toolbar button, or simply press Ctrl+Shift+V. This will bring up a new window (see figure_vector_1). Рис. 12.1: Диалог «Добавить векторны слой» 🚨 From the available options check File. Click on [Browse]. That will bring up a standard open file dialog (see figure vector 2), which allows you to navigate the file system and load a shapefile or other supported data source. The selection box *Filter* allows you to preselect some OGR-supported file formats. You can also select the encoding for the shapefile if desired. Рис. 12.2: Диалог «Открыть OGR-совместимый векторный слой» 🚨 Выбор shape-файла из списка и нажатие кнопки [Открыть] загружает файл в QGIS. Рисунок Figure vector 3 демонстрирует QGIS после открытия файла alaska.shp. ## Совет: Цвет слоя Каждому вновь добавленному к карте слою присваивается случайный цвет. Если было открыто несколько слоёв, каждому присваивается свой цвет, отличный от других. Рис. 12.3: QGIS с загруженным shape-файлом Аляски 🗘 Once a shapefile is loaded, you can zoom around it using the map navigation tools. To change the style of a layer, open the Layer Properties dialog by double clicking on the layer name or by right-clicking on the name in the legend and choosing Properties from the context menu. See section $B\kappa \kappa a d\kappa a \ll Cmun \epsilon$ for more information on setting symbology of vector layers. ### Совет: Добавление слоя или проекта со внешнего носителя в OS X On OS X, portable drives that are mounted beside the primary hard drive do not show up as expected under $File \rightarrow Open\ Project$. We are working on a more OSX-native open/save dialog to fix this. As a workaround, you can type /Volumes in the $File\ name$ box and press Enter. Then you can navigate to external drives and network mounts. #### Улучшение производительности Для увеличения производительности при отрисовке shape-файла можно создать пространственный индекс. Пространственный индекс улучшает скорость отрисовки как при изменении масштаба, так и при панорамировании (перемещении слоя в каком-либо направлении без изменения масштаба). Файл пространственного индекса, используемого QGIS, имеет расширение .qix. Чтобы создать индекс, необходимо: - Load a shapefile by clicking on the Add Vector Layer toolbar button or pressing Ctrl+Shift+V. - Open the Layer Properties dialog by double-clicking on the shapefile name in the legend or by right-clicking and choosing Properties from the context menu. - In the General tab, click the [Create Spatial Index] button. ### Проблема загрузки shape-файла с файлом .prj If you load a shapefile with a .prj file and QGIS is not able to read the coordinate reference system from that file, you will need to define the proper projection manually within the *General* tab of the *Layer Properties* dialog of the layer by clicking the [Specify...] button. This is due to the fact that .prj files often do not provide the complete projection parameters as used in QGIS and listed in the *CRS* dialog. For the same reason, if you create a new shapefile with QGIS, two different projection files are created: a .prj file with limited projection parameters, compatible with ESRI software, and a .qpj file, providing the complete parameters of the used CRS. Whenever QGIS finds a .qpj file, it will be used instead of the .prj. # 12.1.2 Добавление слоя MapInfo к карте To load a MapInfo layer, click on the Add Vector Layer toolbar button; or type Ctrl+Shift+V, change the file
type filter Files of type : to 'Mapinfo File [OGR] (*.mif *.tab *.MIF *.TAB)' and select the MapInfo layer you want to load. ## 12.1.3 Добавление на карту покрытия ArcInfo To load an ArcInfo Binary Coverage, click on the Add Vector Layer toolbar button or press Ctrl+Shift+V to open the Add Vector Layer dialog. Select Directory as Source type. Change the file type filter Files of type to 'Arc/Info Binary Coverage'. Navigate to the directory that contains the coverage file, and select it. Similarly, you can load directory-based vector files in the UK National Transfer Format, as well as the raw TIGER Format of the US Census Bureau. #### 12.1.4 Delimited Text Files Tabular data is a very common and widely used format because of its simplicity and readability – data can be viewed and edited even in a plain text editor. A delimited text file is an attribute table with each column separated by a defined character and each row separated by a line break. The first row usually contains the column names. A common type of delimited text file is a CSV (Comma Separated Values), with each column separated by a comma. Such data files can also contain positional information in two main forms: - As point coordinates in separate columns - As well-known text (WKT) representation of geometry QGIS allows you to load a delimited text file as a layer or ordinal table. But first check that the file meets the following requirements: - 1. The file must have a delimited header row of field names. This must be the first line in the text file. - 2. The header row must contain field(s) with geometry definition. These field(s) can have any name. - 3. The X and Y coordinates (if geometry is defined by coordinates) must be specified as numbers. The coordinate system is not important. As an example of a valid text file, we import the elevation point data file elevp.csv that comes with the QGIS sample dataset (see section $\Pi pumepu \ danhux$): ``` X;Y;ELEV -300120;7689960;13 -654360;7562040;52 1640;7512840;3 [...] ``` Some items to note about the text file: - 1. The example text file uses ; (semicolon) as delimiter. Any character can be used to delimit the fields. - 2. The first row is the header row. It contains the fields X, Y and ELEV. - 3. No quotes (") are used to delimit text fields. - 4. The X coordinates are contained in the X field. - 5. The Y coordinates are contained in the Y field. #### Loading a delimited text file Click the toolbar icon Add Delimited Text Layer in the Manage layers toolbar to open the Create a Layer from a Delimited Text File dialog, as shown in figure delimited text 1. First, select the file to import (e.g., qgis_sample_data/csv/elevp.csv) by clicking on the [Browse] button. Once the file is selected, QGIS attempts to parse the file with the most recently used delimiter. To enable QGIS to properly parse the file, it is important to select the correct delimiter. You can specify a delimiter by activating • Custom delimiters, or by activating • Regular expression delimiter and entering text into the Expression field. For example, to change the delimiter to tab, use \t (this is a regular expression for the tab character). Once the file is parsed, set *Geometry definition* to Point coordinates and choose the X and Y fields from the dropdown lists. If the coordinates are defined as degrees/minutes/seconds, activate the M DMS coordinates checkbox. Finally, enter a layer name (e.g., elevp), as shown in figure_delimited_text_1. To add the layer to the map, click [OK]. The delimited text file now behaves as any other map layer in QGIS. Рис. 12.4: Delimited Text Dialog 🚨 There is also a helper option that allows you to trim leading and trailing spaces from fields — \square Trim fields. Also, it is possible to \square Discard empty fields. If necessary, you can force a comma to be the decimal separator by activating \square Decimal separator is comma. If spatial information is represented by WKT, activate the *Well Known Text* option and select the field with the WKT definition for point, line or polygon objects. If the file contains non-spatial data, activate *No geometry (attribute only table)* and it will be loaded as an ordinal table. Additionaly, you can enable: - **W** Use spatial index to improve the performance of displaying and spatially selecting features. - Use subset index. - Watch file to watch for changes to the file by other applications while QGIS is running. # 12.1.5 OpenStreetMap data In recent years, the OpenStreetMap project has gained popularity because in many countries no free geodata such as digital road maps are available. The objective of the OSM project is to create a free editable map of the world from GPS data, aerial photography or local knowledge. To support this objective, QGIS provides support for OSM data. #### Загрузка данных OpenStreetMap QGIS integrates OpenStreetMap import as a core functionality. - To connect to the OSM server and download data, open the menu $Vector \rightarrow Openstreetmap \rightarrow Load\ data$. You can skip this step if you already obtained an .osm XML file using JOSM, Overpass API or any other source. - The menu $Vector \rightarrow Openstreet map \rightarrow Import\ topology\ from\ an\ XML\ file\ will\ convert\ your\ .osm$ file into a SpatiaLite database and create a corresponding database connection. • The menu Vector o Openstreetmap o Export topology to SpatiaLite then allows you to open the database connection, select the type of data you want (points, lines, or polygons) and choose tags to import. This creates a SpatiaLite geometry layer that you can add to your project by clicking on the Add SpatiaLite Layer toolbar button or by selecting the Add SpatiaLite Layer... option from the Layer menu (see section Chou SpatiaLite). ## 12.1.6 Слои PostGIS PostGIS layers are stored in a PostgreSQL database. The advantages of PostGIS are the spatial indexing, filtering and query capabilities it provides. Using PostGIS, vector functions such as select and identify work more accurately than they do with OGR layers in QGIS. ## Настройка подключения к базе данных PostGIS (PostgreSQL) The first time you use a PostGIS data source, you must create a connection to the PostgreSQL database that contains the data. Begin by clicking on the Add PostGIS Layer toolbar button, selecting the Add PostGIS Layer... option from the Layer menu, or typing Ctrl+Shift+D. You can also open the Add Vector Layer dialog and select Database. The Add PostGIS Table(s) dialog will be displayed. To access the connection manager, click on the [New] button to display the Create a New PostGIS Connection dialog. The parameters required for a connection are: - Name: A name for this connection. It can be the same as Database. - Service: Service parameter to be used alternatively to hostname/port (and potentially database). This can be defined in pg_service.conf. - **Host**: Name of the database host. This must be a resolvable host name such as would be used to open a telnet connection or ping the host. If the database is on the same computer as QGIS, simply enter 'localhost' here. - **Порт**: номер порта, который «слушает» сервер базы данных PostgreSQL. По умолчанию используется порт 5432 - База данных: имя базы данных - SSL mode: How the SSL connection will be negotiated with the server. Note that massive speedups in PostGIS layer rendering can be achieved by disabling SSL in the connection editor. The following options are available: - Disable: Only try an unencrypted SSL connection. - Allow: Try a non-SSL connection. If that fails, try an SSL connection. - Prefer (the default): Try an SSL connection. If that fails, try a non-SSL connection. - Require: Only try an SSL connection. - Username: User name used to log in to the database. - **Пароль**: пароль, используемый вместе с *именем пользователя* для подключения к базе данных Optionally, you can activate the following checkboxes: - 🗹 Сохранить пользователя - 🗹 Сохранить пароль - 🌌 Искать только в таблице «geometry_columns» - Mon't resolve type of unrestricted columns (GEOMETRY) - 🌌 Искать только в схеме «public» - 🌌 Показать таблицы без геометрии - 🔹 🌌 Использовать расчётные метаданные таблицы Когда параметры установлены, можно проверить соединение путём нажатия на кнопку [Проверить соединение]. ### Совет: Пользовательские настройки и безопасность Depending on your computing environment, storing passwords in your QGIS settings may be a security risk. Your customized settings for QGIS are stored based on the operating system: - Delta The settings are stored in your home directory in ~/.qgis2. - 2 The settings are stored in the registry. ## Добавление слоя PostGIS к карте Once you have one or more connections defined, you can load layers from the PostgreSQL database. Of course, this requires having data in PostgreSQL. See section *Импорт данных в PostgreSQL* for a discussion on importing data into the database. Для открытия слоя PostGIS проделайте следующие шаги: - Если диалог Добавить слои PostGIS ещё не открыт, нажмите кнопку Добавить слой PostGIS на панели инструментов или нажмите Ctrl+Shift+D. - Выберите соединение из выпадающего списка и нажмите кнопку [Подключиться] - Select or unselect Also list tables with no geometry. - Optionally, use some Search Options to define which features to load from the layer, or use the [Build query] button to start the Query builder dialog. - Найдите слой, который желаете добавить в список доступных слоёв - Select it by clicking on it. You can select multiple layers by holding down the Shift key while clicking. See section *Koncmpyrmop noucrosux запросов* for information on using the PostgreSQL Query Builder to further define the layer. - Нажмите кнопку [Добавить], чтобы добавить слой к карте #### Совет: Слои PostGIS Normally, a PostGIS layer is defined by an entry in the geometry_columns table. From version 0.9.0 on, QGIS can load layers that do not have an entry in the geometry_columns table. This includes
both tables and views. Defining a spatial view provides a powerful means to visualize your data. Refer to your PostgreSQL manual for information on creating views. ## Некоторые особенности работы со слоями PostgreSQL This section contains some details on how QGIS accesses PostgreSQL layers. Most of the time, QGIS should simply provide you with a list of database tables that can be loaded, and it will load them on request. However, if you have trouble loading a PostgreSQL table into QGIS, the information below may help you understand any QGIS messages and give you direction on changing the PostgreSQL table or view definition to allow QGIS to load it. QGIS requires that PostgreSQL layers contain a column that can be used as a unique key for the layer. For tables, this usually means that the table needs a primary key, or a column with a unique constraint on it. In QGIS, this column needs to be of type int4 (an integer of size 4 bytes). Alternatively, the ctid column can be used as primary key. If a table lacks these items, the oid column will be used instead. Performance will be improved if the column is indexed (note that primary keys are automatically indexed in PostgreSQL). If the PostgreSQL layer is a view, the same requirement exists, but views do not have primary keys or columns with unique constraints on them. You have to define a primary key field (has to be integer) in the QGIS dialog before you can load the view. If a suitable column does not exist in the view, QGIS will not load the layer. If this occurs, the solution is to alter the view so that it does include a suitable column (a type of integer and either a primary key or with a unique constraint, preferably indexed). QGIS offers a checkbox **Select at id** that is activated by default. This option gets the ids without the attributes which is faster in most cases. It can make sense to disable this option when you use expensive views. ## 12.1.7 Импорт данных в PostgreSQL Data can be imported into PostgreSQL/PostGIS using several tools, including the SPIT plugin and the command line tools shp2pgsql and ogr2ogr. #### **DB** Manager QGIS comes with a core plugin named \bigcirc DB Manager. It can be used to load shapefiles and other data formats, and it includes support for schemas. See section Modyab «DB Manager» for more information. #### shp2pgsql PostGIS includes an utility called **shp2pgsql** that can be used to import shapefiles into a PostGIS-enabled database. For example, to import a shapefile named lakes.shp into a PostgreSQL database named gis_data, use the following command: ``` shp2pgsql -s 2964 lakes.shp lakes_new | psql gis_data ``` This creates a new layer named lakes_new in the gis_data database. The new layer will have a spatial reference identifier (SRID) of 2964. See section Paboma c npoekuusmu for more information on spatial reference systems and projections. ## Совет: Экспорт наборов данных из PostGIS Like the import tool **shp2pgsql**, there is also a tool to export PostGIS datasets as shapefiles: **pgsql2shp**. This is shipped within your PostGIS distribution. #### ogr2ogr Besides **shp2pgsql** and **DB Manager**, there is another tool for feeding geodata in PostGIS: **ogr2ogr**. This is part of your GDAL installation. Для импорта shape-файла в PostGIS проделайте следующее (в Δ): ``` {\tt ogr2ogr-f "PostgreSQL" PG:"dbname=postgis \ host=myhost.de \ user=postgres \ password=topsecret" \ alaska.shp} ``` This will import the shapefile alaska.shp into the PostGIS database postgis using the user postgres with the password topsecret on host server myhost.de. Note that OGR must be built with PostgreSQL to support PostGIS. You can verify this by typing (in \bigcirc) ``` ogrinfo --formats | grep -i post ``` If you prefer to use PostgreSQL's **COPY** command instead of the default **INSERT INTO** method, you can export the following environment variable (at least available on Δ and X): ``` export PG_USE_COPY=YES ``` ogr2ogr does not create spatial indexes like shp2pgsl does. You need to create them manually, using the normal SQL command CREATE INDEX afterwards as an extra step (as described in the next section Повышение производительности). ## Повышение производительности Retrieving features from a PostgreSQL database can be time-consuming, especially over a network. You can improve the drawing performance of PostgreSQL layers by ensuring that a PostGIS spatial index exists on each layer in the database. PostGIS supports creation of a GiST (Generalized Search Tree) index to speed up spatial searches of the data (GiST index information is taken from the PostGIS documentation available at http://postgis.refractions.net). Ниже представлен порядок создания GiST-индекса: ``` CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] GIST_GEOMETRY_OPS); ``` Заметьте, что для больших таблиц создание индекса может занять продолжительное время. После создания индекса следует произвести выполнить команду VACUUM ANALYZE. Дополнительную информацию можно найти в документации к PostGIS (POSTGIS-PROJECT Литература и ссылки на web-pecypcu). ``` Приведём пример создания GiST-индекса (♣): gsherman@madison: ~/current$ psql gis_data Welcome to psql 8.3.0, the PostgreSQL interactive terminal. Type: \copyright for distribution terms \h for help with SQL commands \? for help with psql commands \g or terminate with semicolon to execute query \q to quit gis_data=# CREATE INDEX sidx_alaska_lakes ON alaska_lakes gis_data-# USING GIST (the_geom GIST_GEOMETRY_OPS); CREATE INDEX gis_data=# VACUUM ANALYZE alaska_lakes; VACUUM gis_data=# \q gsherman@madison: ~/current$ ``` # 12.1.8 Векторные слои, пересекающие долготу 180° Many GIS packages don't wrap vector maps with a geographic reference system (lat/lon) crossing the 180 degrees longitude line (http://postgis.refractions.net/documentation/manual-2.0/ST_Shift_Longitude.html). As result, if we open such a map in QGIS, we will see two far, distinct locations, that should appear near each other. In Figure_vector_4, the tiny point on the far left of the map canvas (Chatham Islands) should be within the grid, to the right of the New Zealand main islands. Рис. 12.5: Карта в системе координат широта/долгота, пересекающая долготу 180° 🚨 A work-around is to transform the longitude values using PostGIS and the ST Shift Longitude function. This function reads every point/vertex in every component of every feature in a geometry, and if the longitude coordinate is $< 0^{\circ}$, it adds 360° to it. The result is a 0° - 360° version of the data to be plotted in a 180°-centric map. Рис. 12.6: Карта, пересекающая долготу 180°, после применения функции ST Shift Longitude #### Использование - Import data into PostGIS (Импорт данных в PostgreSQL) using, for example, the DB Manager - Use the PostGIS command line interface to issue the following command (in this example, "TABLE" is the actual name of your PostGIS table): gis_data=# update TABLE set the_geom=ST_Shift_Longitude(the_geom); - If everything went well, you should receive a confirmation about the number of features that were updated. Then you'll be able to load the map and see the difference (Figure vector 5). ## 12.1.9 Слои SpatiaLite The first time you load data from a SpatiaLite database, begin by clicking on the Add SpatiaLite Layer toolbar button, or by selecting the I Add SpatiaLite Layer... option from the Layer menu, or by typing Ctrl+Shift+L. This will bring up a window that will allow you either to connect to a SpatiaLite database already known to QGIS, which you can choose from the drop-down menu, or to define a new connection to a new database. To define a new connection, click on [New] and use the file browser to point to your SpatiaLite database, which is a file with a .sqlite extension. If you want to save a vector layer to SpatiaLite format, you can do this by right clicking the layer in the legend. Then, click on Save as.., define the name of the output file, and select 'SpatiaLite' as format and the CRS. Also, you can select 'SQLite' as format and then add SPATIALITE=YES in the OGR data source creation option field. This tells OGR to create a SpatiaLite database. See also $http://www.gdal.org/ogr/drv_sqlite.html$. QGIS также поддерживает обновляемые представления в базах данных SpatiaLite. ## Создание нового слоя SpatiaLite Процесс создания новых слоёв в базе SpatiaLite описан в разделе Создание нового слоя SpatiaLite. ## Совет: Модули для работы с данными SpatiaLite For SpatiaLite data management, you can also use several Python plugins: QSpatiaLite, SpatiaLite Manager or DB Manager (core plugin, recommended). If necessary, they can be downloaded and installed with the Plugin Installer. # 12.1.10 Слои MSSQL Spatial QGIS also provides native MS SQL 2008 support. The first time you load MSSQL Spatial data, begin by clicking on the Add MSSQL Spatial Layer toolbar button or by selecting the Add MSSQL Spatial Layer... option from the Layer menu, or by typing Ctrl+Shift+M. # 12.1.11 Oracle Spatial Layers The spatial features in Oracle Spatial aid users in managing geographic and location data in a native type within an Oracle database. QGIS now has support for such layers. ### Настройка подключения к базе данных PostGIS (PostgreSQL) The first time you use an Oracle Spatial data source, you must create a connection to the database that contains the data. Begin by clicking on the Add Orcale Spatial Layer toolbar button, selecting the Add Orcale Spatial Layer... option from the Layer menu, or typing Ctrl+Shift+0. To access the connection manager, click on the [New] button to display the Create a New Oracle Spatial Connection dialog. The parameters required for a connection are: - Name: A name for this connection. It can be the same as Database - Database: SID or SERVICE NAME of the Oracle instance. - **Host**: Name of the database host. This must be a resolvable host name such as would be used to open a telnet connection or ping the
host. If the database is on the same computer as QGIS, simply enter 'localhost' here. - **Порт**: номер порта, который «слушает» сервер базы данных Oracle. По умолчанию используется порт 1521. - $\bullet~$ Username: Username used to login to the database. - **Пароль**: пароль, используемый вместе с *именем пользователя* для подключения к базе данных Optionally, you can activate following checkboxes: • Save Username Indicates whether to save the database username in the connection configuration. - Save Password Indicates whether to save the database password in the connection settings. - Month of the data of the displayed tables to those that are in the all sdo geom metadata view. This can speed up the initial display of spatial tables. - Only look for user's tables When searching for spatial tables, restrict the search to tables that are owned by the user. - Also list tables with no geometry Indicates that tables without geometry should also be listed by default. - We estimated table statistics for the layer metadata When the layer is set up, various metadata are required for the Oracle table. This includes information such as the table row count, geometry type and spatial extents of the data in the geometry column. If the table contains a large number of rows, determining this metadata can be time-consuming. By activating this option, the following fast table metadata operations are done: Row count is determined from all_tables.num_rows. Table extents are always determined with the SDO_TUNE.EXTENTS_OF function, even if a layer filter is applied. Table geometry is determined from the first 100 non-null geometry rows in the table. - Months of the existing geometry types Only list the existing geometry types and don't offer to add others. Когда параметры установлены, можно проверить соединение путём нажатия на кнопку [**Проверить соединение**]. ## Совет: Пользовательские настройки и безопасность В зависимости от используемой операционной системы и настроек компьютера, хранение пароля в настройках QGIS может создавать угрозу безопасности. QGIS хранит пользовательские настройки: - Δ The settings are stored in your home directory in .config/QGIS/QGIS2.conf. - 2 The settings are stored in the registry. #### Loading an Oracle Spatial Layer Once you have one or more connections defined, you can load layers from the Oracle database. Of course, this requires having data in Oracle. To load a layer from Oracle Spatial, perform the following steps: - If the Add Oracle Spatial layers dialog is not already open, click on the Add Oracle Spatial Layer toolbar button. - Выберите соединение из выпадающего списка и нажмите кнопку [Подключиться] - Select or unselect Also list tables with no geometry. - Optionally, use some Search Options to define which features to load from the layer or use the [Build query] button to start the Query builder dialog. - Найдите слой, который желаете добавить в список доступных слоёв - Select it by clicking on it. You can select multiple layers by holding down the Shift key while clicking. See section *Kohcmpykmop nouckobux запросов* for information on using the Oracle Query Builder to further define the layer. - Нажмите кнопку [Добавить], чтобы добавить слой к карте #### Cobet: Oracle Spatial Layers Normally, an Oracle Spatial layer is defined by an entry in the USER SDO METADATA table. 12.2 Свойства векторного слоя The Layer Properties dialog for a vector layer provides information about the layer, symbology settings and labeling options. If your vector layer has been loaded from a PostgreSQL/PostGIS datastore, you can also alter the underlying SQL for the layer by invoking the Query Builder dialog on the General tab. To access the Layer Properties dialog, double-click on a layer in the legend or right-click on the layer and select Properties from the pop-up menu. Рис. 12.7: Свойства векторного слоя Δ ## 12.2.1 Вкладка «Стиль» The Style menu provides you with a comprehensive tool for rendering and symbolizing your vector data. You can use $Layer\ rendering \rightarrow$ tools that are common to all vector data, as well as special symbolizing tools that were designed for the different kinds of vector data. ## Отрисовка • Layer transparency: You can make the underlying layer in the map canvas visible with this tool. Use the slider to adapt the visibility of your vector layer to your needs. You can also make a precise definition of the percentage of visibility in the the menu beside the slider. - Layer blending mode and Feature blending mode: You can achieve special rendering effects with these tools that you may previously only know from graphics programs. The pixels of your overlaying and underlaying layers are mixed through the settings described below. - Normal: This is the standard blend mode, which uses the alpha channel of the top pixel to blend with the pixel beneath it. The colors aren't mixed. - Lighten: This selects the maximum of each component from the foreground and background pixels. Be aware that the results tend to be jagged and harsh. - Screen: Light pixels from the source are painted over the destination, while dark pixels are not. This mode is most useful for mixing the texture of one layer with another layer (e.g., you can use a hillshade to texture another layer). - Dodge: Dodge will brighten and saturate underlying pixels based on the lightness of the top pixel. So, brighter top pixels cause the saturation and brightness of the underlying pixels to increase. This works best if the top pixels aren't too bright; otherwise the effect is too extreme. - Addition: This blend mode simply adds pixel values of one layer with the other. In case of values above one (in the case of RGB), white is displayed. This mode is suitable for highlighting features. - Darken: This creates a resultant pixel that retains the smallest components of the foreground and background pixels. Like lighten, the results tend to be jagged and harsh. - Multiply: Here, the numbers for each pixel of the top layer are multiplied with the corresponding pixels for the bottom layer. The results are darker pictures. - Burn: Darker colors in the top layer cause the underlying layers to darken. Burn can be used to tweak and colorise underlying layers. - Overlay: This mode combines the multiply and screen blending modes. In the resulting picture, light parts become lighter and dark parts become darker. - Soft light: This is very similar to overlay, but instead of using multiply/screen it uses color burn/dodge. This is supposed to emulate shining a soft light onto an image. - Hard light: Hard light is also very similar to the overlay mode. It's supposed to emulate projecting a very intense light onto an image. - Difference: Difference subtracts the top pixel from the bottom pixel, or the other way around, to always get a positive value. Blending with black produces no change, as the difference with all colors is zero. - Subtract: This blend mode simply subtracts pixel values of one layer from the other. In case of negative values, black is displayed. ## Отрисовка (тип легенды) The renderer is responsible for drawing a feature together with the correct symbol. There are four types of renderers: single symbol, categorized, graduated and rule-based. There is no continuous color renderer, because it is in fact only a special case of the graduated renderer. The categorized and graduated renderers can be created by specifying a symbol and a color ramp - they will set the colors for symbols appropriately. For point layers, there is a point displacement renderer available. For each data type (points, lines and polygons), vector symbol layer types are available. Depending on the chosen renderer, the *Style* menu provides different additional sections. On the bottom right of the symbology dialog, there is a [Symbol] button, which gives access to the Style Manager (see section vector_style_manager). The Style Manager allows you to edit and remove existing symbols and add new ones. #### Совет: Изменение нескольких стилей The Symbology allows you to select multiple symbols and right click to change color, transparency, size, or width of selected entries. ### Отрисовка обычным знаком The Single Symbol Renderer is used to render all features of the layer using a single user-defined symbol. The properties, which can be adjusted in the *Style* menu, depend partially on the type of layer, but all types share the following dialog structure. In the top-left part of the menu, there is a preview of the current symbol to be rendered. On the right part of the menu, there is a list of symbols already defined for the current style, prepared to be used by selecting them from the list. The current symbol can be modified using the menu on the right side. If you click on the first level in the *Symbol layers* dialog on the left side, it's possible to define basic parameters like *Size*, *Transparency*, *Color* and *Rotation*. Here, the layers are joined together. Рис. 12.8: Single symbol line properties 🗘 More detailed settings can be made when clicking on the second level in the *Symbol layers* dialog. You can define *Symbol layers* that are combined afterwards. A symbol can consist of several *Symbol layers*. The following settings are possible: - Point layers: - Symbol layer type: You have the option to use Ellipse markers, Font markers, Simple markers, SVG markers and Vector Field markers. - Colors - Size - Outline style - Outline width - Angle - Offset X, Y: You can shift the symbol in the x- or y-direction. - Anchor point - Data defined properties ... - Line layers: - Symbol layer type: Here you can use Simple Lines and Marker Lines. - Color - Pen width - Offset - Pen style - Join style - Cap style - **U**se custom dash pattern - Dash pattern unit - Data defined properties ... - Polygon Layers: - Symbol layer type: It's possible to use Centroid Fill, Gradient Fill, Line Pattern Fill, Point Pattern Fill, SVG Fill, Simple Fill and two
Outlines (Marker line and Simple line). - Colors - Fill style - Border style - Border width - Offset X, Y - Data defined properties ... 'Gradient Fill' Symbol layer type allows you to select between a Two color and Color ramp setting. You can use the Feature centroid as Referencepoint. All fills 'Gradient Fill' Symbol layer type is also available through the Symbol menu of the Categorized and Graduated Renderer and through the Rule properties menu of the Rule-based renderer. It is possible to only draw polygon borders inside the polygon. Using 'Outline: Simple line' select **I** Draw line only inside polygon. #### Отрисовка уникальными значениями The Categorized Renderer is used to render all features from a layer, using a single user-defined symbol whose color reflects the value of a selected feature's attribute. The *Style* menu allows you to select: - The attribute (using the Column listbox or the E... Set column expression function) - Знак (в диалоге Выбор условного знака) - The colors (using the Color Ramp listbox) The [Advanced] button in the lower-right corner of the dialog allows you to set the fields containing rotation and size scale information. For convenience, the center of the menu lists the values of all currently selected attributes together, including the symbols that will be rendered. Pucyнok figure_symbology_2 иллюстрирует диалог отрисовки уникальными значениями на примере слоя рек из демонстрационного набора данных QGIS. Рис. 12.9: Опции отрисовки «градуированным знаком» 🚨 You can create a custom color ramp choosing *New color ramp*... from the *Color ramp* drop-down menu. A dialog will prompt for the ramp type: Gradient, Random, ColorBrewer, or cpt-city. The first three have options for number of steps and/or multiple stops in the color ramp. You can use the *Invert* option while classifying the data with a color ramp. See figure_symbology_3 for an example of custom color ramp and figure_symbology_3a for the cpt-city dialog. The cpt-city option opens a new dialog with hundreds of themes included 'out of the box'. ### Отрисовка градуированным знаком The Graduated Renderer is used to render all the features from a layer, using a single user-defined symbol whose color reflects the assignment of a selected feature's attribute to a class. Like the Categorized Renderer, the Graduated Renderer allows you to define rotation and size scale from specified columns. Also, analogous to the Categorized Renderer, the Style tab allows you to select: - The attribute (using the Column listbox or the E... Set column expression function) - Знак (в диалоге Выбор условного знака) Рис. 12.10: Example of custom gradient color ramp with multiple stops 🕹 Рис. 12.11: cpt-city dialog with hundreds of color ramps 🚨 Рис. 12.12: Опции отрисовки «уникальными значениями» 🚨 • The colors (using the Color Ramp list) Additionally, you can specify the number of classes and also the mode for classifying features within the classes (using the Mode list). The available modes are: - Equal Interval - Квантили - Natural Breaks (Jenks) - Standard Deviation - Pretty Breaks The listbox in the center part of the *Style* menu lists the classes together with their ranges, labels and symbols that will be rendered. Pucyнok figure_symbology_4 иллюстрирует диалог отрисовки градуированным знаком на примере слоя рек из демонстрационного набора данных QGIS. #### Cobet: Thematic maps using an expression Categorized and graduated thematic maps can now be created using the result of an expression. In the properties dialog for vector layers, the attribute chooser has been augmented with a *E-- Set column expression function. So now you no longer need to write the classification attribute to a new column in your attribute table if you want the classification attribute to be a composite of multiple fields, or a formula of some sort. #### Отрисовка на основе правил The Rule-based Renderer is used to render all the features from a layer, using rule based symbols whose color reflects the assignment of a selected feature's attribute to a class. The rules are based on SQL statements. The dialog allows rule grouping by filter or scale, and you can decide if you want to enable symbol levels or use only the first-matched rule. Pucyнok figure_symbology_5 иллюстрирует диалог отрисовки по заданным правилам на примере слоя рек из демонстрационного набора данных QGIS. To create a rule, activate an existing row by double-clicking on it, or click on '+' and click on the new rule. In the Rule properties dialog, you can define a label for the rule. Press the button to open the expression string builder. In the Function List, click on Fields and Values to view all attributes of the attribute table to be searched. To add an attribute to the field calculator Expression field, double click its name in the Fields and Values list. Generally, you can use the various fields, values and functions to construct the calculation expression, or you can just type it into the box (see Kandrynamop noneŭ). Since QGIS 2.2, you can create a new rule by copying and pasting an existing rule with the right mouse button. Also since QGIS 2.2, you can use the 'ELSE' rule that will be run if none of the other rules on that level match. Рис. 12.13: Опции отрисовки «по правилам» 🚨 #### Смещение точек The Point Displacement Renderer works to visualize all features of a point layer, even if they have the same location. To do this, the symbols of the points are placed on a displacement circle around a center symbol. ## Cobet: Export vector symbology You have the option to export vector symbology from QGIS into Google *.kml, *.dxf and MapInfo *.tab files. Just open the right mouse menu of the layer and click on $Save\ selection\ as \to to$ specify the name of the output file and its format. In the dialog, use the $Symbology\ export$ menu to save the symbology either as $Feature\ symbology\ \to$ or as $Symbol\ layer\ symbology\ \to$. If you have used symbol layers, it is recommended to use the second setting. ## 12.2.2 Подписи The Labels core application provides smart labeling for vector point, line and polygon layers, and it only requires a few parameters. This new application also supports on-the-fly transformed layers. The core functions of the application have been redesigned. In QGIS, there are a number of other features that improve the labeling. The following menus have been created for labeling the vector layers: - Text - Formatting - Buffer - Background Рис. 12.14: Диалог «Смещение точек» 🗘 - Shadow - Placement - Rendering Let us see how the new menus can be used for various vector layers. Создание подписей для точечных слоёв Start QGIS and load a vector point layer. Activate the layer in the legend and click on the Layer Labeling Options icon in the QGIS toolbar menu. The following steps describe a simple labeling without using the *Data defined override* functions, which are situated next to the drop-down menus. You can define the text style in the *Text* menu (see Figure_labels_1). Use the *Type case* option to influence the text rendering. You have the possibility to render the text 'All uppercase', 'All lowercase' or 'Capitalize first letter'. Use the blend modes to create effects known from graphics programs (see blend modes). In the *Formatting* menu, you can define a character for a line break in the labels with the 'Wrap on character' function. Use the **Formatted** numbers option to format the numbers in an attribute table. Here, decimal places may be inserted. If you enable this option, three decimal places are initially set by default. To create a buffer, just activate the \square Draw text buffer checkbox in the Buffer menu. The buffer color is variable. Here, you can also use blend modes (see blend modes). If the Color buffer's fill checkbox is activated, it will interact with partially transparent text and give mixed color transparency results. Turning off the buffer fill fixes that issue (except where the interior aspect of the buffer's stroke intersects with the text's fill) and also allows you to make outlined text. In the Background menu, you can define with $Size\ X$ and $Size\ Y$ the shape of your background. Use $Size\ type$ to insert an additional 'Buffer' into your background. The buffer size is set by default here. The background then consists of the buffer plus the background in $Size\ X$ and $Size\ Y$. You can set a Rotation where you can choose between 'Sync with label', 'Offset of label' and 'Fixed'. Using 'Offset of label' and 'Fixed', you can rotate the background. Define an $Offset\ X,Y$ with X and Y values, and the background will be shifted. When applying $Radius\ X,Y$, the background gets rounded corners. Again, it is possible to mix the background with the underlying layers in the map canvas using the $Blend\ mode$ (see blend mode). Use the *Shadow* menu for a user-defined *Drop shadow*. The drawing of the background is very variable. Choose between 'Lowest label component', 'Text', 'Buffer' and 'Background'. The *Offset* angle depends on the orientation of the label. If you choose the *Solution Use global shadow* checkbox, then the zero point of the angle is always oriented to the north and doesn't depend on the orientation of the label. You can influence the appearance of the shadow with the *Blur radius*. The higher the number, the softer the shadows. The appearance of the drop shadow can also be altered by choosing a blend mode (see blend modes). Choose the *Placement* menu for the label placement and the labeling priority. Using the *Offset from* point setting, you now have the option to use *Quadrants* to place your label. Additionally, you can alter the angle of the label placement with the *Rotation* setting. Thus, a placement in a certain quadrant with a certain rotation is possible. In the Rendering menu, you can define label and feature options. Under Label options, you find the scale-based visibility setting now. You can prevent QGIS
from rendering only selected labels with the Show all labels for this layer (including colliding labels) checkbox. Under Feature options, you can define whether every part of a multipart feature is to be labeled. It's possible to define whether the number of features to be labeled is limited and to Discourage labels from covering features. Рис. 12.15: Элегантные подписи для точечных векторных слоёв 🚨 ## Создание подписей для линейных слоёв After that, you can define the text style in the Text menu. Here, you can use the same settings as for point layers. Also, in the Formatting menu, the same settings as for point layers are possible. The Buffer menu has the same functions as described in section labeling point layers. The Background menu has the same entries as described in section labeling point layers. Also, the Shadow menu has the same entries as described in section labeling point layers. In the Placement menu, you find special settings for line layers. The label can be placed Parallel, Curved or Morizontal. With the Parallel and Curved option, you can define the position Above line, On line and Below line. It's possible to select several options at once. In that case, QGIS will look for the optimal position of the label. Remember that here you can also use the line orientation for the position of the label. Additionally, you can define a Maximum angle between curved characters when selecting the Curved option (see Figure labels 2). The Rendering menu has nearly the same entries as for point layers. In the Feature options, you can now Suppress labeling of features smaller than. #### Создание подписей для полигональных слоёв In the *Text* menu, define the text style. The entries are the same as for point and line layers. Рис. 12.16: Элегантные подписи для линейных векторных слоёв 🚨 The *Formatting* menu allows you to format multiple lines, also similar to the cases of point and line layers. As with point and line layers, you can create a text buffer in the Buffer menu. Use the Background menu to create a complex user-defined background for the polygon layer. You can use the menu also as with the point and line layers. The entries in the *Shadow* menu are the same as for point and line layers. In the *Placement* menu, you find special settings for polygon layers (see Figure_labels_3). Offset from centroid, Horizontal (slow), Around centroid, Free and Using perimeter are possible. In the Offset from centroid settings, you can specify if the centroid is of the visible polygon or whole polygon. That means that either the centroid is used for the polygon you can see on the map or the centroid is determined for the whole polygon, no matter if you can see the whole feature on the map. You can place your label with the quadrants here, and define offset and rotation. The Around centroid setting makes it possible to place the label around the centroid with a certain distance. Again, you can define visible polygon or whole polygon for the centroid. With the Using perimeter settings, you can define a position and a distance for the label. For the position, Above line, on line, Below line and Line orientation dependent position are possible. The entries in the *Rendering* menu are the same as for line layers. You can also use *Suppress labeling of features smaller than* in the *Feature options*. **Define labels based on expressions** QGIS allows to use expressions to label features. Just click the E... icon in the habels menu of the properties dialog. In figure_labels_4 you see a sample expression to label the alaska regions with name and area size, based on the field 'NAME_2', some descriptive text and the function '\$area()' in combination with 'format number()' to make it look nicer. Рис. 12.17: Элегантные подписи для площадных векторных слоёв 🚨 Рис. 12.18: Using expressions for labeling Δ Expression based labeling is easy to work with. All you have to take care of is, that you need to combine all elements (strings, fields and functions) with a string concatenation sign '||' and that fields a written in "double quotes" and strings in 'single quotes'. Let's have a look at some examples: ``` # label based on two fields 'name' and 'place' with a "name" || ', ' || "place" -> John Smith, Paris # label based on two fields 'name' and 'place' with a descriptive text 'My name is ' || "name" || 'and I live in ' || "place" -> My name is John Smith and I live in Paris # label based on two fields 'name' and 'place' with a descriptive text # and a line break (\n) 'My name is ' || "name" || '\nI live in ' || "place" -> My name is John Smith I live in Paris # create a multi-line label based on a field and the $area function # to show the place name and its area size based on unit meter. 'The area of ' || "place" || 'has a size of ' || area || m^2' \rightarrow The area of Paris has a size of 105000000 m² # create a CASE ELSE condition. If the population value in field # population is <= 50000 it is a town, otherwise a city. 'This place is a ' || CASE WHEN "population <= 50000" THEN 'town' ELSE 'city' END -> This place is a town ``` As you can see in the expression builder, you have hundreds if functions available to create simple and very complex expressions to label your data in QGIS. ## Using data-defined override for labeling With the data-defined override functions, the settings for the labeling are overridden by entries in the attribute table. You can activate and deactivate the function with the right-mouse button. Hover over the symbol and you see the information about the data-defined override, including the current definition field. We now describe an example using the data-defined override function for the Move label function (see figure_labels_5). - 1. Import lakes.shp from the QGIS sample dataset. - 2. Double-click the layer to open the Layer Properties. Click on Labels and Placement. Select Offset from centroid. - 3. Look for the *Data defined* entries. Click the licon to define the field type for the *Coordinate*. Choose 'xlabel' for X and 'ylabel' for Y. The icons are now highlighted in yellow. - 4. Zoom into a lake. - 5. Go to the Label toolbar and click the icon. Now you can shift the label manually to another position (see figure_labels_6). The new position of the label is saved in the 'xlabel' and 'ylabel' columns of the attribute table. Рис. 12.19: Labeling of vector polygon layers with data-defined override Δ Рис. 12.20: Move labels 🚨 ## 12.2.3 Поля Within the Fields menu, the field attributes of the selected dataset can be manipulated. The buttons New Column and \bigcap Delete Column can be used when the dataset is in \bigcap Editing mode. ## Элемент редактирования Рис. 12.21: Диалог выбора элемента редактирования поля 🚨 Within the *Fields* menu, you also find an **edit widget** column. This column can be used to define values or a range of values that are allowed to be added to the specific attribute table column. If you click on the **[edit widget]** button, a dialog opens, where you can define different widgets. These widgets are: - Line edit: An edit field that allows you to enter simple text (or restrict to numbers for numeric attributes). - Classification: Displays a combo box with the values used for classification, if you have chosen 'unique value' as legend type in the *Style* menu of the properties dialog. - Range: Allows you to set numeric values from a specific range. The edit widget can be either a slider or a spin box. - Unique values: You can select one of the values already used in the attribute table. If 'Editable' is activated, a line edit is shown with autocompletion support, otherwise a combo box is used. - Имя файла: Упрощает процесс выбор файлов за счёт добавления соответствующего диалога. - Value map: A combo box with predefined items. The value is stored in the attribute, the description is shown in the combo box. You can define values manually or load them from a layer or a CSV file. - **Enumeration**: Opens a combo box with values that can be used within the columns type. This is currently only supported by the PostgreSQL provider. - Immutable: The immutable attribute column is read-only. The user is not able to modify the content. - Hidden: A hidden attribute column is invisible. The user is not able to see its contents. - Checkbox: Displays a checkbox, and you can define what attribute is added to the column when the checkbox is activated or not. - Text edit: This opens a text edit field that allows multiple lines to be used. - Calendar: Opens a calendar widget to enter a date. Column type must be text. - Связанное значение: позволяет выбирать значения из связанной таблицы в выпадающем списке. Необходимо указать таблицу, ключево поле и поле значений. - Генератор UUID: атрибут только для чтения, в которое будет записан UUID (Universally Unique Identifiers), если поле пустое. - Изображение: Виджет для вывода изображения. - Webview: Field contains a URL. The width and height of the field is variable. - Color: A field that allows you to enter color codes. During data entry, the color is visible through a color bar included in the field. - **Relation Reference**: This widged lets you embed the feature form of the referenced layer on the feature form of the actual layer. See *Creating one to many relations*. With the **Attribute editor layout**, you can now define built-in forms for data entry jobs (see figure_fields_2). Choose 'Drag and drop designer' and an attribute column. Use the icon to create a category that will then be shown during the digitizing session (see figure_fields_3). The next step will be to assign the relevant fields to the category with the icon. You can create more categories and use the same fields again. When creating a new category, QGIS will insert a new tab for the category in the built-in form. Other options in the dialog are 'Autogenerate' and 'Provide ui-file'. 'Autogenerate' just creates editors for all fields and tabulates them. The 'Provide
ui-file' option allows you to use complex dialogs made with the Qt-Designer. Using a UI-file allows a great deal of freedom in creating a dialog. For detailed information, see http://nathanw.net/2011/09/05/qgis-tips-custom-feature-forms-with-python-logic/. QGIS dialogs can have a Python function that is called when the dialog is opened. Use this function to add extra logic to your dialogs. An example is (in module MyForms.py): ``` def open(dialog,layer,feature): geom = feature.geometry() control = dialog.findChild(QWidged,"My line edit") ``` Reference in Python Init Function like so: MyForms.open MyForms.py must live on PYTHONPATH, in .qgis2/python, or inside the project folder. ## 12.2.4 Общие Вкладка *Общие* очень схожа с аналогичной вкладкой диалога свойств растрового слоя. Она позволяет: #### Информация - изменять отображаемое в легенде имя слоя - Define the Layer source of the vector layer Рис. 12.22: Dialog to create categories with the Attribute editor layout $\mbox{Puc.}\ 12.23\mbox{:}\ \mbox{Resulting built-in form in a data entry session}$ - Define the Data source encoding to define provider-specific options and to be able to read the file - Система координат - Specify the coordinate reference system. Here, you can view or change the projection of the specific vector layer. - Create a Spatial Index (only for OGR-supported formats) - обновить информацию об охвате слоя, при помощи кнопки [Обновить границы] - View or change the projection of the specific vector layer, clicking on Specify ... - **■** Scale dependent visibility - You can set the *Maximum (inclusive)* and *Minimum (exclusive)* scale. The scale can also be set by the **[Current]** buttons. #### Подмножество объектов • With the [Query Builder] button, you can create a subset of the features in the layer that will be visualized (also refer to section Save selected features as new layer). Рис. 12.24: General menu in vector layers properties dialog 🚨 ## 12.2.5 Rendering Menu QGIS 2.2 introduces support for on-the-fly feature generalisation. This can improve rendering times when drawing many complex features at small scales. This feature can be enabled or disabled in the layer settings using the Simplify geometry option. There is also a new global setting that enables generalisation by default for newly added layers (see section Π apamempu). Note: Feature generalisation may introduce artefacts into your rendered output in some cases. These may include slivers between polygons and inaccurate rendering when using offset-based symbol layers. ## 12.2.6 Вывод This menu is specifically created for Map Tips. It includes a new feature: Map Tip display text in HTML. While you can still choose a \bigcirc Field to be displayed when hovering over a feature on the map, it is now possible to insert HTML code that creates a complex display when hovering over a feature. To activate Map Tips, select the menu option $View \rightarrow MapTips$. Figure Display 1 shows an example of HTML code. Рис. 12.25: HTML code for map tip 🛆 Рис. 12.26: Map tip made with HTML code 🛆 ## 12.2.7 Действия QGIS позволяет выполнять действия с использованием атрибутов элемента. Эту вкладку можно использовать для выполнения любого количества действий, например, запуск программы с параметрами, взятыми из атрибутов элемента, или передача параметров в веб-утилиту генерации отчётов. Рис. 12.27: Overview action dialog with some sample actions Δ Actions are useful when you frequently want to run an external application or view a web page based on one or more values in your vector layer. They are divided into six types and can be used like this: - Generic, Mac, Windows and Unix actions start an external process. - Python actions execute a Python expression. - Generic and Python actions are visible everywhere. - Mac, Windows and Unix actions are visible only on the respective platform (i.e., you can define three 'Edit' actions to open an editor and the users can only see and execute the one 'Edit' action for their platform to run the editor). There are several examples included in the dialog. You can load them by clicking on [Add default actions]. One example is performing a search based on an attribute value. This concept is used in the following discussion. ### Задание действий Attribute actions are defined from the vector $Layer\ Properties$ dialog. To define an action, open the vector $Layer\ Properties$ dialog and click on the Actions menu. Go to the $Action\ properties$. Select 'Generic' as type and provide a descriptive name for the action. The action itself must contain the name of the application that will be executed when the action is invoked. You can add one or more attribute field values as arguments to the application. When the action is invoked, any set of characters that start with a % followed by the name of a field will be replaced by the value of that field. The special characters %% will be replaced by the value of the field that was selected from the identify results or attribute table (see using_actions below). Double quote marks can be used to group text into a single argument to the program, script or command. Double quotes will be ignored if preceded by a backslash. If you have field names that are substrings of other field names (e.g., col1 and col10), you should indicate that by surrounding the field name (and the % character) with square brackets (e.g., [%col10]). This will prevent the %col10 field name from being mistaken for the %col1 field name with a 0 on the end. The brackets will be removed by QGIS when it substitutes in the value of the field. If you want the substituted field to be surrounded by square brackets, use a second set like this: [[%col10]]. Using the *Identify Features* tool, you can open the *Identify Results* dialog. It includes a *(Derived)* item that contains information relevant to the layer type. The values in this item can be accessed in a similar way to the other fields by preceding the derived field name with (Derived). For example, a point layer has an X and Y field, and the values of these fields can be used in the action with %(Derived).X and %(Derived).Y. The derived attributes are only available from the *Identify Results* dialog box, not the *Attribute Table* dialog box. Два примера действий показаны ниже: - konqueror http://www.google.com/search?q=%nam - konqueror http://www.google.com/search?q=%% In the first example, the web browser konqueror is invoked and passed a URL to open. The URL performs a Google search on the value of the nam field from our vector layer. Note that the application or script called by the action must be in the path, or you must provide the full path. To be certain, we could rewrite the first example as: /opt/kde3/bin/konqueror http://www.google.com/search?q=%nam. This will ensure that the konqueror application will be executed when the action is invoked. The second example uses the %% notation, which does not rely on a particular field for its value. When the action is invoked, the %% will be replaced by the value of the selected field in the identify results or attribute table. Использование действий Actions can be invoked from either the *Identify Results* dialog, an *Attribute Table* dialog or from *Run Feature Action* (recall that these dialogs can be opened by clicking or Identify Features or Open Attribute Table or Run Feature Action). To invoke an action, right click on the record and choose the action from the pop-up menu. Actions are listed in the popup menu by the name you assigned when defining the action. Click on the action you wish to invoke. If you are invoking an action that uses the \%\% notation, right-click on the field value in the *Identify Results* dialog or the *Attribute Table* dialog that you wish to pass to the application or script. Here is another example that pulls data out of a vector layer and inserts it into a file using bash and the echo command (so it will only work on or perhaps X). The layer in question has fields for a species name taxon_name, latitude lat and longitude long. We would like to be able to make a spatial selection of localities and export these field values to a text file for the selected record (shown in yellow in the QGIS map area). Here is the action to achieve this: ``` bash -c "echo \"%taxon_name %lat %long\" >> /tmp/species_localities.txt" ``` После вызова этого действия для нескольких записей таблицы, результирующий файл будет выглядеть примерно так: ``` Acacia mearnsii -34.0800000000 150.0800000000 Acacia mearnsii -34.900000000 150.1200000000 Acacia mearnsii -35.2200000000 149.9300000000 Acacia mearnsii -32.2700000000 150.4100000000 ``` As an exercise, we can create an action that does a Google search on the lakes layer. First, we need to determine the URL required to perform a search on a keyword. This is easily done by just going to Google and doing a simple search, then grabbing the URL from the address bar in your browser. From this little effort, we see that the format is http://google.com/search?q=qgis, where QGIS is the search term. Armed with this information, we can proceed: 1. Убедитесь, что слой lakes загружен. - 2. Open the Layer Properties dialog by double-clicking on the layer in the legend, or right-click and choose *Properties* from the pop-up menu. - 3. Click on the Actions menu. - 4. Введите имя действия, например, Google Search. - 5. Для действия нам нужно задать имя внешней запускаемой программы. В этот раз мы будем использовать веб-браузер Firefox. Если программы нет в текущей директории, необходимо задать полный путь к ней. - 6. Following the name of the external application, add the URL used for doing a Google search, up to but not including the search term: http://google.com/search?q= - 7. Теперь поле Действие должен выглялеть так: firefox http://google.com/search?q= - 8. Щёлкните на выпадающем списке, содержащем имена полей слоя lakes. Он расположен непосредственно
слева от кнопки [Вставить поле]. - 9. From the drop-down box, select 'NAMES' and click [Insert Field]. - 10. Теперь текст вашего действия выглядит так: firefox http://google.com/search?q=%NAMES - 11. To finalize the action, click the [Add to action list] button. This completes the action, and it is ready to use. The final text of the action should look like this: firefox http://google.com/search?q=%NAMES Теперь мы можем использовать это действие. Закройте диалог Свойства слоя и приблизьтесь к области интереса. Убедитесь, что слой lakes активный и выберите озеро. В окне результатов вы теперь видите, что ваше действие показывается: Рис. 12.28: Select feature and choose action 🚨 When we click on the action, it brings up Firefox and navigates to the http://www.google.com/search?q=Tustumena. It is also possible to add further attribute fields to the action. Therefore, you can add a + to the end of the action text, select another field and click on [Insert Field]. In this example, there is just no other field available that would make sense to search You can define multiple actions for a layer, and each will show up in the *Identify Results* dialog. There are all kinds of uses for actions. For example, if you have a point layer containing locations of images or photos along with a file name, you could create an action to launch a viewer to display the image. You could also use actions to launch web-based reports for an attribute field or combination of fields, specifying them in the same way we did in our Google search example. We can also make more complex examples, for instance, using **Python** actions. Usually, when we create an action to open a file with an external application, we can use absolute paths, or eventually relative paths. In the second case, the path is relative to the location of the external program executable file. But what about if we need to use relative paths, relative to the selected layer (a file-based one, like a shapefile or SpatiaLite)? The following code will do the trick: ``` command = "firefox"; imagerelpath = "images_test/test_image.jpg"; layer = qgis.utils.iface.activeLayer(); import os.path; layerpath = layer.source() if layer.providerType() == 'ogr' else (qgis.core.QgsDataSourceURI(layer.source()).database() if layer.providerType() == 'spatialite' else None); path = os.path.dirname(str(layerpath)); image = os.path.join(path,imagerelpath); import subprocess; subprocess.Popen([command, image]); ``` We just have to remember that the action is one of type *Python* and the *command* and *imagerelpath* variables must be changed to fit our needs. But what about if the relative path needs to be relative to the (saved) project file? The code of the Python action would be: ``` command="firefox"; imagerelpath="images/test_image.jpg"; projectpath=qgis.core.QgsProject.instance().fileName(); import os.path; path=os.path.dirname(str(projectpath)) if projectpath != '' else None; image=os.path.join(path, imagerelpath); import subprocess; subprocess.Popen([command, image]); ``` Another Python action example is the one that allows us to add new layers to the project. For instance, the following examples will add to the project respectively a vector and a raster. The names of the files to be added to the project and the names to be given to the layers are data driven (*filename* and *layername* are column names of the table of attributes of the vector where the action was created): ## 12.2.8 Связи The *Joins* menu allows you to join a loaded attribute table to a loaded vector layer. After clicking the *Add vector join* dialog appears. As key columns, you have to define a join layer you want to connect with the target vector layer. Then, you have to specify the join field that is common to both the join layer and the target layer. As a result of the join, all information from the join layer and the target layer are displayed in the attribute table of the target layer as joined information. QGIS currently has support for joining non-spatial table formats supported by OGR (e.g., CSV, DBF and Excel), delimited text and the PostgreSQL provider (see figure_joins_1). Additionally, the add vector join dialog allows you to: Рис. 12.29: Join an attribute table to an existing vector layer 🚨 - 🌌 Сохранить связанный слой в виртуальной памяти - 🗹 Создать индекс на основе объединяемого поля ## 12.2.9 Диаграммы The Diagrams menu allows you to add a graphic overlay to a vector layer (see figure_diagrams_1). The current core implementation of diagrams provides support for pie charts, text diagrams and histograms. The menu is divided into four tabs: Appearance, Size, Postion and Options. In the cases of the text diagram and pie chart, text values of different data columns are displayed one below the other with a circle or a box and dividers. In the *Size* tab, diagram size is based on a fixed size or on linear scaling according to a classification attribute. The placement of the diagrams, which is done in the *Position* tab, interacts with the new labeling, so position conflicts between diagrams and labels are detected and solved. In addition, chart positions can be fixed manually. We will demonstrate an example and overlay on the Alaska boundary layer a text diagram showing temperature data from a climate vector layer. Both vector layers are part of the QGIS sample dataset (see section $\Pi_{pumepu} \partial_{annux}$). - 1. First, click on the Load Vector icon, browse to the QGIS sample dataset folder, and load the two vector shape layers alaska.shp and climate.shp. - 2. Сделайте двойной щелчок на слое climate в легенде карты и откройте диалог $\it Ceoù cmea$ $\it c.o.g.$ - 3. Click on the *Diagrams* menu, activate Display diagrams, and from the *Diagram type* combo box, select 'Text diagram'. - 4. In the *Appearance* tab, we choose a light blue as background color, and in the *Size* tab, we set a fixed size to 18 mm. Рис. 12.30: Vector properties dialog with diagram menu 🚨 - 5. In the Position tab, placement could be set to 'Around Point'. - 6. In the diagram, we want to display the values of the three columns T_F_JAN, T_F_JUL and T_F_MEAN. First select T_F_JAN as Attributes and click the button, then T_F_JUL, and finally T_F_MEAN. - 7. Теперь нажмите кнопку [Применить] для отображения диаграммы в главном окне QGIS. - 8. You can adapt the chart size in the Size tab. Deactivate the Fixed size and set the size of the diagrams on the basis of an attribute with the [Find maximum value] button and the Size menu. If the diagrams appear too small on the screen, you can activate the Increase size of small diagrams checkbox and define the minimum size of the diagrams. - 9. Change the attribute colors by double clicking on the color values in the Assigned attributes field. Figure_diagrams_2 gives an idea of the result. - 10. Finally, click [Ok]. Remember that in the *Position* tab, a *Data defined position* of the diagrams is possible. Here, you can use attributes to define the position of the diagram. You can also set a scale-dependent visibility in the *Appearance* tab. The size and the attributes can also be an expression. Use the ε_{--} button to add an expression. ## 12.2.10 Метаданные The Metadata menu consists of Description, Attribution, MetadataURL and Properties sections. In the *Properties* section, you get general information about the layer, including specifics about the type and location, number of features, feature type, and editing capabilities. The *Extents* table provides you Рис. 12.31: Diagram from temperature data overlayed on a map 🚨 with layer extent information and the Layer Spatial Reference System, which is information about the CRS of the layer. This is a quick way to get information about the layer. Additionally, you can add or edit a title and abstract for the layer in the Description section. It's also possible to define a Keyword list here. These keyword lists can be used in a metadata catalogue. If you want to use a title from an XML metadata file, you have to fill in a link in the DataUrl field. Use Attribution to get attribute data from an XML metadata catalogue. In Metadata Url, you can define the general path to the XML metadata catalogue. This information will be saved in the QGIS project file for subsequent sessions and will be used for QGIS server. Рис. 12.32: Metadata menu in vector layers properties dialog 🚨 Глава 12. Работа с векторными данными ## 12.3 Редактирование QGIS предоставляет разнообразные возможности для редактирования векторных данных OGR, Spatialite, PostGIS, MSSQL Spatial и Oracle Spatial. Примечание: The procedure for editing GRASS layers is different - see section Оцифровка и правка векторных слоёв GRASS for details. ## Совет: Параллельное редактирование This version of QGIS does not track if somebody else is editing a feature at the same time as you are. The last person to save their edits wins. ## 12.3.1 Настройка порога прилипания и радиуса поиска Перед началом редактирования узлов необходимо установить величину порога прилипания и радиуса поиска, что позволит оптимизировать редактирование геометрии векторных слоёв. ## Порог прилипания Snapping tolerance is the distance QGIS uses to search for the closest vertex and/or segment you are trying to connect to when you set a new vertex or move an existing vertex. If you aren't within the snapping tolerance, QGIS will leave the vertex where you release the mouse button, instead of snapping it to an existing vertex and/or segment. The snapping tolerance setting affects all tools that work with tolerance. - 1. A general, project-wide snapping tolerance can be defined by choosing Settings → Options. On Mac, go to QIS → Preferences.... On Linux: Edit → Options. In the Digitizing tab, you can select between 'to vertex', 'to segment' or 'to vertex and segment' as default snap mode. You can also define a default snapping tolerance and a search radius for vertex edits. The tolerance can be set either in map units
or in pixels. The advantage of choosing pixels is that the snapping tolerance doesn't have to be changed after zoom operations. In our small digitizing project (working with the Alaska dataset), we define the snapping units in feet. Your results may vary, but something on the order of 300 ft at a scale of 1:10000 should be a reasonable setting. - 2. A layer-based snapping tolerance can be defined by choosing $Settings \rightarrow (\text{or } File \rightarrow) Snapping options...$ to enable and adjust snapping mode and tolerance on a layer basis (see figure edit 1). Note that this layer-based snapping overrides the global snapping option set in the Digitizing tab. So, if you need to edit one layer and snap its vertices to another layer, then enable snapping only on the snap to layer, then decrease the global snapping tolerance to a smaller value. Furthermore, snapping will never occur to a layer that is not checked in the snapping options dialog, regardless of the global snapping tolerance. So be sure to mark the checkbox for those layers that you need to snap to. ## Радиус поиска Search radius is the distance QGIS uses to search for the closest vertex you are trying to move when you click on the map. If you aren't within the search radius, QGIS won't find and select any vertex for editing, and it will pop up an annoying warning to that effect. Snap tolerance and search radius are set in map units or pixels, so you may find you need to experiment to get them set right. If you specify too big of a tolerance, QGIS may snap to the wrong vertex, especially if you are dealing with a large number of vertices in close proximity. Set search radius too small, and it won't find anything to move. The search radius for vertex edits in layer units can be defined in the *Digitizing* tab under $Settings \rightarrow Options$. This is the same place where you define the general, project- wide snapping tolerance. Рис. 12.33: Настройка параметров прилипания для отдельного слоя 🚨 ## 1021 ## 12.3.2 Масштабирование и прокрутка карты Перед редактированием слоя следует увеличить район исследований на карте. Это спасёт от ожидания прорисовки всех вершин слоя. Помимо использования кнопок ^Ф Прокрутка карты и В Увеличить / Р Уменьшить на панели инструментов, навигация также может осуществляться с помощью «колеса» мыши, клавиши «Пробел» и стрелок. ### Зуммирование и прокрутка карты с помощью «колеса» мыши While digitizing, you can press the mouse wheel to pan inside of the main window, and you can roll the mouse wheel to zoom in and out on the map. For zooming, place the mouse cursor inside the map area and roll it forward (away from you) to zoom in and backwards (towards you) to zoom out. The mouse cursor position will be the center of the zoomed area of interest. You can customize the behavior of the mouse wheel zoom using the $Map\ tools$ tab under the $Settings \rightarrow Options$ menu. #### Прокрутка карты с помощью стрелок Panning the map during digitizing is possible with the arrow keys. Place the mouse cursor inside the map area, and click on the right arrow key to pan east, left arrow key to pan west, up arrow key to pan north, and down arrow key to pan south. You can also use the space bar to temporarily cause mouse movements to pan the map. The PgUp and PgDown keys on your keyboard will cause the map display to zoom in or out without interrupting your digitizing session. ## 12.3.3 Топологическое редактирование Besides layer-based snapping options, you can also define topological functionalities in the Snapping options... dialog in the Settings (or File) menu. Here, you can define M Enable topological editing, and/or for polygon layers, you can activate the column M Avoid Int., which avoids intersection of new polygons. #### Включение топологического редактирования The option Enable topological editing is for editing and maintaining common boundaries in polygon mosaics. QGIS 'detects' a shared boundary in a polygon mosaic, so you only have to move the vertex once, and QGIS will take care of updating the other boundary. #### Предотвращение пересечения новых полигонов The second topological option in the Avoid Int. column, called Avoid intersections of new polygons, avoids overlaps in polygon mosaics. It is for quicker digitizing of adjacent polygons. If you already have one polygon, it is possible with this option to digitize the second one such that both intersect, and QGIS then cuts the second polygon to the common boundary. The advantage is that you don't have to digitize all vertices of the common boundary. #### Активация прилипания к пересечениям Another option is to use \square Enable snapping on intersection. It allows you to snap on an intersection of background layers, even if there's no vertex on the intersection. ## 12.3.4 Редактирование существующего слоя By default, QGIS loads layers read-only. This is a safeguard to avoid accidentally editing a layer if there is a slip of the mouse. However, you can choose to edit any layer as long as the data provider supports it, and the underlying data source is writable (i.e., its files are not read-only). In general, tools for editing vector layers are divided into a digitizing and an advanced digitizing toolbar, described in section \mathcal{A} onon-numerabhbe ϕ yhkuuu ouu ϕ pooku. You can select and unselect both under $Settings \rightarrow Toolbars \rightarrow$. Using the basic digitizing tools, you can perform the following functions: | Иконка | Назначение | Иконка | Назначение | |------------|----------------------------------|----------|--------------------------------| | W | Текущие правки | | Режим редактирования | | • <u>×</u> | Добавить объект: создать точку | ₩ | Добавить объект: создать линию | | | Добавить объект: создать полигон | | Переместить объект | | 19 | Редактирование узлов | | Удалить выделенное | | \prec | Вырезать объекты | | Копировать объекты | | | Вставить объекты | | Сохранить правки | Основные инструменты редактирования векторного слоя All editing sessions start by choosing the Toggle editing option. This can be found in the context menu after right clicking on the legend entry for a given layer. Alternatively, you can use the Toggle Editing Toggle editing button from the digitizing toolbar to start or stop the editing mode. Once the layer is in edit mode, markers will appear at the vertices, and additional tool buttons on the editing toolbar will become available. #### Совет: Регулярное сохранение #### Добавление объектов Можно использовать кнопки на панели инструментов: ${}^{\circ}$ ${}^{$ Для каждого объекта сначала идет оцифровка формы, а затем добавляются атрибуты. Чтобы начать оцифровку и создать первую точку нового объекта, надо нажать левой кнопкой мыши в области карты. Для продолжения линий и полигонов надо продолжать нажимать на левую кнопку мыши для создания каждого дополнительного узла. Чтобы закончить редактирование объекта, просто щелкните правой кнопки мыши в любом месте карты. Это подтверждение того, что редактирование данного объекта окончено. The attribute window will appear, allowing you to enter the information for the new feature. Figure_edit_2 shows setting attributes for a fictitious new river in Alaska. In the Digitizing menu under the $Settings \rightarrow Options$ menu, you can also activate Suppress attributes pop-up windows after each created feature and Reuse last entered attribute values. Рис. 12.34: Диалог ввода атрибутивных значений после оцифровки нового объекта 🗘 With the Move Feature(s) icon on the toolbar, you can move existing features. ## Совет: Типы значений атрибутов For editing, the attribute types are validated during entry. Because of this, it is not possible to enter a number into a text column in the dialog *Enter Attribute Values* or vice versa. If you need to do so, you should edit the attributes in a second step within the *Attribute table* dialog. #### Текущие правки This new feature allows the digitization of multiple layers. Choose Save for Selected Layers to save all changes you made in multiple layers. You also have the opportunity to Rollback for Selected Layers, so that the digitization may be withdrawn for all selected layers. If you want to stop editing the selected layers, Cancel for Selected Layer(s) is an easy way. The same functions are available for editing all layers of the project. ## Редактирование узлов For shapefile-based layers as well as SpatialLite, PostgreSQL/PostGIS, MSSQL Spatial, and Oracle Spatial tables, the Node Tool provides manipulation capabilities of feature vertices similar to CAD programs. It is possible to simply select multiple vertices at once and to move, add or delete them altogether. The node tool also works with 'on the fly' projection turned on, and it supports the topological editing feature. This tool is, unlike other tools in QGIS, persistent, so when some operation is done, selection stays active for this feature and tool. If the node tool is unable to find any features, a warning will be displayed. It is important to set the property $Settings \rightarrow \$ $Options \rightarrow Digitizing \rightarrow Search \ Radius$: 1,00 \diamondsuit to a number greater than zero (i.e., 10). Otherwise, QGIS will not be able to tell which vertex is being edited. ## Совет: Маркировка вершин The current version of QGIS supports three kinds of vertex markers: 'Semi-transparent circle', 'Cross' and 'None'. To change the marker style, choose \(^{>}\) Options from the Settings menu, click on the Digitizing tab and select the appropriate entry. ### Основные операции Включите инструмент (ж. Редактирование узлов и выделите объект простым нажатием на него. На месте каждой вершины этого объекта появятся красные рамки. - Selecting vertices: You can select vertices by clicking on them one at a time, by clicking on an edge to select the vertices at both ends, or by clicking and dragging a rectangle around some vertices. When a vertex is selected, its
color changes to blue. To add more vertices to the current selection, hold down the Ctrl key while clicking. Hold down Ctrl or Shift when clicking to toggle the selection state of vertices (vertices that are currently unselected will be selected as usual, but also vertices that are already selected will become unselected). - Adding vertices: To add a vertex, simply double click near an edge and a new vertex will appear on the edge near to the cursor. Note that the vertex will appear on the edge, not at the cursor position; therefore, it should be moved if necessary. - Удаление узлов: После выделения вершин для их удаления надо нажать клавишу Delete, вершины будут удалены. Обратите внимание, что, согласно стандарту Quantum GIS, необходимое количество узлов для каждого типа объекта все же останется. Чтобы полностью удалить объект, надо использовать другой инструмент, а именно - **Перемещение узлов**: Выделите все вершины, которые собираетесь перемещать. Все выделенные вершины будут перенесены в направлении курсора. Если активна функция прилипания, все вершины могут перескочить на ближайшие узлы или линии. Each change made with the node tool is stored as a separate entry in the Undo dialog. Remember that all operations support topological editing when this is turned on. On-the-fly projection is also supported, and the node tool provides tooltips to identify a vertex by hovering the pointer over it. #### Вырезать, копировать и вставить объекты Выделенные объекты можно удалять, копировать и вставлять из слоя в слой одного проекта QGIS при условии, что для них включен $\sqrt{}^{\rm Pewum\ pedaktupobahus}$. Features can also be pasted to external applications as text. That is, the features are represented in CSV format, with the geometry data appearing in the OGC Well-Known Text (WKT) format. However, in this version of QGIS, text features from outside QGIS cannot be pasted to a layer within QGIS. When would the copy and paste function come in handy? Well, it turns out that you can edit more than one layer at a time and copy/paste features between layers. Why would we want to do this? Say we need to do some work on a new layer but only need one or two lakes, not the 5,000 on our big_lakes layer. We can create a new layer and use copy/paste to plop the needed lakes into it. As an example, we will copy some lakes to a new layer: 1. Загрузите слой, из которого вы собираетесь копировать (исходный слой) - 2. Загрузите или создайте слой, в который вы будете копировать (целевой слой) - 3. Начаните редактирование целевого слоя - 4. Активируйте исходный слой щелчком мыши по нему в легенде - 5. Используя инструмент Выбрать объекты, выделите объект(ы) в исходном слое - 6. Нажмите кнопку 🖹 Копировать объекты - 7. Сделайте активным целевой слой, щелкнув по нему в легенде кнопкой мыши - 8. Нажмите Вставить объекты - 9. Завершите редактирование и сохраните изменения What happens if the source and target layers have different schemas (field names and types are not the same)? QGIS populates what matches and ignores the rest. If you don't care about the attributes being copied to the target layer, it doesn't matter how you design the fields and data types. If you want to make sure everything - the feature and its attributes - gets copied, make sure the schemas match. #### Совет: Соответствие вставляемых объектов If your source and destination layers use the same projection, then the pasted features will have geometry identical to the source layer. However, if the destination layer is a different projection, then QGIS cannot guarantee the geometry is identical. This is simply because there are small rounding-off errors involved when converting between projections. #### Удаление выделенных объектов Если надо удалить весь полигон, вначале его необходимо выделить, используя обычный инструмент Выбрать объекты. Также можно выделить несколько объектов для удаления. После выбора соответствующих объектов используйте инструмент Удалить выделенное, объекты будут удалены. The Cut Features tool on the digitizing toolbar can also be used to delete features. This effectively deletes the feature but also places it on a "spatial clipboard". So, we cut the feature to delete. We could then use the Paste Features tool to put it back, giving us a one-level undo capability. Cut, copy, and paste work on the currently selected features, meaning we can operate on more than one at a time. ## Сохранение отредактированных слоев When a layer is in editing mode, any changes remain in the memory of QGIS. Therefore, they are not committed/saved immediately to the data source or disk. If you want to save edits to the current layer but want to continue editing without leaving the editing mode, you can click the Save Layer Edits button. When you turn editing mode off with Toggle editing (or quit QGIS for that matter), you are also asked if you want to save your changes or discard them. If the changes cannot be saved (e.g., disk full, or the attributes have values that are out of range), the QGIS in-memory state is preserved. This allows you to adjust your edits and try again. ## Совет: Целостность данных Создание резервной копии данных перед началом редактирования— это всегда хорошая идея. Несмотря на то, что авторы QGIS сделали все возможное для сохранения ваших данных, они попрежнему не дают никаких гарантий в этом отношении. | Иконка | Назначение | Иконка | Назначение | |----------|--|------------|------------------------------| | 5 | Отменить | ⇔ | Вернуть | | | Повернуть объект | (| Упростить объект | | | Добавить кольцо | 3 | Добавить часть | | <u></u> | Fill Ring | × | Удалить кольцо | | | Удалить часть | <i>—</i> | Корректировать объекты | | | Параллельная кривая | | Разбить объекты | | | Split Parts | (F) | ОБъединить выбранные объекты | | * | Объединить атрибуты выбранных объектов | (| Повернуть значки | ## 12.3.5 Дополнительные функции оцифровки Дополнительные возможности редактирования векторного слоя ## Отменить и Вернуть The Dundo and Redo tools allows you to undo or redo vector editing operations. There is also a dockable widget, which shows all operations in the undo/redo history (see Figure edit 3). This widget is not displayed by default; it can be displayed by right clicking on the toolbar and activating the Undo/Redo checkbox. Undo/Redo is however active, even if the widget is not displayed. Рис. 12.35: Отмена и возврат операций редактирования 🚨 When Undo is hit, the state of all features and attributes are reverted to the state before the reverted operation happened. Changes other than normal vector editing operations (for example, changes done by a plugin), may or may not be reverted, depending on how the changes were performed. To use the undo/redo history widget, simply click to select an operation in the history list. All features will be reverted to the state they were in after the selected operation. ### Повернуть объект Use Rotate Feature(s) to rotate one or multiple selected features in the map canvas. You first need to select the features and then press the Rotate Feature(s) icon. The centroid of the feature(s) appears and will be the rotation anchor point. If you selected multiple features, the rotation anchor point will be the common center of the features. Press and drag the left mouse button in the desired direction to rotate the selected features. It's also possible to create a user-defined rotation anchor point around which the selected feature will rotate. Select the features to rotate and activate the Rotate Feature(s) tool. Press and hold the Ctrl button and move the mouse pointer (without pressing the mouse button) to the place where you want the rotation anchor to be moved. Release the Ctrl button when the desired rotation anchor point is reached. Now, press and drag the left mouse button in the desired direction to rotate the selected feature(s). ## Упростить объект The Simplify Feature tool allows you to reduce the number of vertices of a feature, as long as the geometry doesn't change. First, select a feature. It will be highlighted by a red rubber band and a slider will appear. Moving the slider, the red rubber band will change its shape to show how the feature is being simplified. Click [OK] to store the new, simplified geometry. If a feature cannot be simplified (e.g. multi-polygons), a message will appear. #### Добавить кольцо You can create ring polygons using the Add Ring icon in the toolbar. This means that inside an existing area, it is possible to digitize further polygons that will occur as a 'hole', so only the area between the boundaries of the outer and inner polygons remains as a ring polygon. ## Добавить часть You can add part polygons to a selected multipolygon. The new part polygon must be digitized outside the selected multi-polygon. ## Fill Ring You can use the Fill Ring function to add a ring to a polygon and add a new feature to the layer at the same time. Thus you need not first use the Add Ring icon and then the Add feature function anymore. ## Удалить кольцо The Delete Ring tool allows you to delete ring polygons inside an existing area. This tool only works with polygon layers. It doesn't change anything when it is used on the outer ring of the polygon. This tool can be used on polygon and multi-polygon features. Before you select the vertices of a ring, adjust the vertex edit tolerance. ### Удалить часть The Delete Part tool allows you to delete parts from multifeatures (e.g., to delete polygons from a multi-polygon feature). It won't delete the last part of the feature; this last part will stay untouched. This tool works with all multi-part geometries: point, line and polygon. Before you select the vertices of a part, adjust the vertex edit tolerance. ## Корректировать объекты You can reshape line and polygon features using the Reshape Features icon on the toolbar. It replaces the line or polygon
part from the first to the last intersection with the original line. With polygons, this can sometimes lead to unintended results. It is mainly useful to replace smaller parts of a polygon, not for major overhauls, and the reshape line is not allowed to cross several polygon rings, as this would generate an invalid polygon. Рассмотрим редактирование границы полигона при помощи этого инструмента. Сначала необходимо поставить точку внутри полигона, рядом с местом, где необходимо добавить новую вершину. Затем провести линию через контур и добавить новые вершины. Для завершения операции поместите указатель внутри контура и нажмите правую клавишу мыши. Инструмент автоматически добавит новые вершины в местах пересечения контура. Аналогичным образом можно «вырезать» часть полигона. В этом случаем начинать и заканчивать построение необходимо вне контура. **Примечание:** The reshape tool may alter the starting position of a polygon ring or a closed line. So, the point that is represented 'twice' will not be the same any more. This may not be a problem for most applications, but it is something to consider. #### Параллельная кривая The Offset Curve tool creates parallel shifts of line layers. The tool can be applied to the edited layer (the geometries are modified) or also to background layers (in which case it creates copies of the lines / rings and adds them to the the edited layer). It is thus ideally suited for the creation of distance line layers. The displacement is shown at the bottom left of the taskbar. To create a shift of a line layer, you must first go into editing mode and then select the feature. You can make the Offset Curve tool active and drag the cross to the desired distance. Your changes may then be saved with the Save Layer Edits tool. ## Разбить объекты Можно разбить объекты, используя инструмент Разбить объекты на панели инструментов. Чтобы разбить объект, просто нарисуйте линию через него. ### Split parts In QGIS 2.0 it is now possible to split the parts of a multi part feature so that the number of parts is increased. Just draw a line across the part you want to split using the Split Parts icon. ### Объединить выбранные объекты The Merge Selected Features tool allows you to merge features that have common boundaries and the same attributes. ## Объединить атрибуты выбранных объектов The Merge Attributes of Selected Features tool allows you to merge attributes of features with common boundaries and attributes without merging their boundaries. First, select several features at once. Then press the Merge Attributes of Selected Features button. Now QGIS asks you which attributes are to be applied to all selected objects. As a result, all selected objects have the same attribute entries. #### Повернуть значки Rotate Point Symbols allows you to change the rotation of point symbols in the map canvas. You must first define a rotation column from the attribute table of the point layer in the Advanced menu of the Style menu of the Layer Properties. Also, you will need to go into the 'SVG marker' and choose Data defined properties Activate Angle and choose 'rotation' as field. Without these settings, the tool is inactive. Рис. 12.36: Поворот точечного символа 🗘 To change the rotation, select a point feature in the map canvas and rotate it, holding the left mouse button pressed. A red arrow with the rotation value will be visualized (see Figure_edit_4). When you release the left mouse button again, the value will be updated in the attribute table. **Примечание:** Если удерживать кнопку Ctrl нажатой, поворот будет осуществляться с шагом 15 градусов. ## 12.3.6 Создание нового векторного слоя QGIS allows you to create new shapefile layers, new SpatiaLite layers, and new GPX layers. Creation of a new GRASS layer is supported within the GRASS plugin. Please refer to section $Cosdanue\ noboso\ beknownero\ case\ GRASS$ for more information on creating GRASS vector layers. ## Создание нового shape-файла To create a new shape layer for editing, choose $New \rightarrow Value New$ Shapefile Layer... from the Layer menu. The New Vector Layer dialog will be displayed as shown in Figure_edit_5. Choose the type of layer (point, line or polygon) and the CRS (coordinate reference system). Note that QGIS does not yet support creation of 2.5D features (i.e., features with X,Y,Z coordinates). To complete the creation of the new shapefile layer, add the desired attributes by clicking on the [Add to attributes list] button and specifying a name and type for the attribute. A first 'id' column is added as default but can be removed, if not wanted. Only Type: real , Type: integer , Type: string and Type:date attributes are supported. Additionally and according to the attribute type, you can also define the width and precision of the new attribute column. Once you are happy with the attributes, click [OK] and provide a name for the shapefile. QGIS will automatically add a .shp extension to the name you specify. Once the layer has been created, it will be added to the map, and you can edit it in the same way as described in section Pedarmuposanue cymecmsyromes cross above. Рис. 12.37: Диалог создания нового shape-файла 🚨 #### Создание нового слоя SpatiaLite Чтобы создать новый редактируемый слой SpatiaLite, выберите $Cosdamb \rightarrow Cosdamb$ слой SpatiaLite... из меню Cnoù. Появится диалог Cosdamb слой SpatiaLite, как показано на Figure edit 6. The first step is to select an existing SpatiaLite database or to create a new SpatiaLite database. This can be done with the browse button to the right of the database field. Then, add a name for the new layer, define the layer type, and specify the coordinate reference system with [Specify CRS]. If desired, you can select Create an autoincrementing primary key. To define an attribute table for the new SpatiaLite layer, add the names of the attribute columns you want to create with the corresponding column type, and click on the [Add to attribute list] button. Once you are happy with the attributes, click [OK]. QGIS will automatically add the new layer to the legend, and you can edit it in the same way as described in section Pedakmupoвahue существующего слоя above. Further management of SpatiaLite layers can be done with the DB Manager. See Modynb «DB Manager». ## Создание нового слоя GPX When this plugin is loaded, choose $New \to \square$ Create new GPX Layer... from the Layer menu. In the Save new GPX file as dialog, you can choose where to save the new GPX layer. Рис. 12.38: Диалоговое окно «Создать слой SpatiaLite» 🗴 ## 12.3.7 Работа с таблицей атрибутов The attribute table displays features of a selected layer. Each row in the table represents one map feature, and each column contains a particular piece of information about the feature. Features in the table can be searched, selected, moved or even edited. To open the attribute table for a vector layer, make the layer active by clicking on it in the map legend area. Then, from the main Layer menu, choose Open Attribute Table. It is also possible to right click on the layer and choose Open Attribute Table from the drop-down menu, and to click on the Open Attribute Table button in the Attributes toolbar. This will open a new window that displays the feature attributes for the layer (figure_attributes_1). The number of features and the number of selected features are shown in the attribute table title. Рис. 12.39: Таблица атрибутов слоя regions 🚨 ## Выделение объектов в таблице атрибутов **Выделенная строка** в таблице атрибутов представляет все атрибуты выделенного объекта слоя. Таблица атрибутов отражает все изменения в выделении объектов слоя через главное окно карты или наоборот. Смена выделения в таблице атрибутов приводит к изменению выделения в главном окне карты, также выделение другого объекта слоя приводит к выделению соответствующей ему строки таблицы. Строки можно выделить, если нажать кнопкой мыши на номер строки, расположенный слева от неё. Выделение строки не меняет текущего положения курсора. Несколько строк можно выделить, удерживая клавишу Ctrl. Также доступно Сквозное выделение, для этого необходимо удерживать клавишу Shift и выбрать несколько строк, также нажимая на их номера-заголовки, расположенные слева. Все строки между текущим положением курсора и выбранными строками будут выделены. Перемещение курсора атрибутивной таблице, путем нажатия на ячейки, не изменяет выделение. А изменение выделения на карте не приводит к изменению положения курсора атрибутивной таблицы. Каждый столбец может быть отсортирован. Для этого надо нажать кнопкой мыши на его заголовоке. Небольшая стрелка отражает порядок сортировки (направленная вниз стрелка означает убывание величины от верхних строк к нижним, а направленная вверх стрелка означает возрастание величины от верхних строк к нижним). For a **simple search by attributes** on only one column, choose the $Column\ filter \to from$ the menu in the bottom left corner. Select the field (column) on which the search should be performed from the dropdown menu, and hit the **[Apply]** button. Then, only the matching features are shown in the attribute table. To make a selection, you have to use the Select features using an Expression icon on top of the attribute table. Select features using an Expression allows you to define a subset of a table using a Function List like in the Field Calculator (see Kandungamop noneü). The query result can then be saved as a new vector layer. For example, if you want to find regions that are boroughs from regions.shp of the QGIS sample data, you have to open the Fields and Values menu and choose the field that you want to query. Double-click the field 'TYPE_2' and also [Load all unique values]. From the list, choose and double-click 'Borough'. In the Expression field, the following query appears: ``` "TYPE_2" = 'Borough' ``` Here you can also use the Function list \rightarrow Recent (Selection) to make a selection that you used before. The
expression builder remembers the last 20 used expressions. The matching rows will be selected, and the total number of matching rows will appear in the title bar of the attribute table, as well as in the status bar of the main window. For searches that display only selected features on the map, use the Query Builder described in section *Koncmpykmop nouckobux запросов*. Чтобы отобразить только выбранные строки, нажмите на кнопке в нижнем левом углу атрибутивной таблицы и выберите режим *Выделенные объекты*. The other buttons at the top of the attribute table window provide the following functionality: - Toggle editing mode to edit single values and to enable functionalities described below (also with Ctrl+E) - Save Edits (also with Ctrl+S) - Unselect all (also with Ctrl+U) - Move selected to top (also with Ctrl+T) - 🌇 Invert selection (also with Ctrl+R) - Properties of the Copy selected rows to clipboard (also with Ctrl+C) - Zoom map to the selected rows (also with Ctrl+J) - Pan map to the selected rows (also with Ctrl+P) - Delete selected features (also with Ctrl+D) - New Column for PostGIS layers and for OGR layers with GDAL version >= 1.6 (also with Ctrl+W) - Delete Column for PostGIS layers and for OGR layers with GDAL version >= 1.9 (also with Ctrl+L) - Open field calculator (also with Ctrl+I) #### Совет: Игнорирование геометрии в формате WKT If you want to use attribute data in external programs (such as Excel), use the \Box Copy selected rows to clipboard button. You can copy the information without vector geometries if you deactivate $Settings \to Options \to D$ at a sources menu \Box Copy geometry in WKT representation from attribute table. #### Сохранение выделенных объектов в качестве нового слоя The selected features can be saved as any OGR-supported vector format and also transformed into another coordinate reference system (CRS). Just open the right mouse menu of the layer and click on Save selection $as \to to$ define the name of the output file, its format and CRS (see section $\pi e renda$). It is also possible to specify OGR creation options within the dialog. #### Paste into new layer Features that are on the clipboard may be pasted into a new layer. To do this, first make a layer editable. Select some features, copy them to the clipboard, and then paste them into a new layer using $Edit \rightarrow Paste\ Features\ as\ and\ choosing\ New\ vector\ layer\ or\ New\ memory\ layer.$ This applies to features selected and copied within QGIS and also to features from another source defined using well-known text (WKT). #### Работа с непространственными атрибутивными таблицами QGIS allows you also to load non-spatial tables. This currently includes tables supported by OGR and delimited text, as well as the PostgreSQL, MSSQL and Oracle provider. The tables can be used for field lookups or just generally browsed and edited using the table view. When you load the table, you will see it in the legend field. It can be opened with the it in the legend field. It can be opened with the legend field. It can be opened with the legend field is then editable like any other layer attribute table. As an example, you can use columns of the non-spatial table to define attribute values, or a range of values that are allowed, to be added to a specific vector layer during digitizing. Have a closer look at the edit widget in section Π_{OAA} to find out more. ## 12.3.8 Creating one to many relations Relations are a technique often used in databases. The concept is, that features (rows) of different layers (tables) can belong to each other. As an example you have a layer with all regions of alaska (polygon) which provides some attributes about its name and region type and a unique id (which acts as primary key). ### Foreign keys Then you get another point layer or table with information about airports that are located in the regions and you also want to keep track of these. If you want to add them to the region layer, you need to create a one to many relation using foreign keys, because there are several airports in most regions. In addition to the already existing attributes in the airports attribute table another field fk_region which acts as a foreign key (if you have a database, you will probably want to define a constraint on it). This field fk_region will always contain an id of a region. It can be seen like a pointer to the region it belongs to. And you can design a custom edit form for the editing and QGIS takes care about the setup. It works with different providers (so you can also use it with shape and csv files) and all you have to do is to tell QGIS the relations between your tables. ### Layers QGIS makes no difference between a table and a vector layer. Basically, a vector layer is a table with a geometry. So can add your table as a vector layer. To demostrate you can load the 'region' shapefile (with geometries) and the 'airport' csv table (without geometries) and a foreign key (fk_region) to the layer region. This means, that each airport belongs to exactly one region while each region can have any number of airports (a typical one to many relation). Рис. 12.40: Alaska region with airports 🚨 ## **Definition (Relation Manager)** The first thing we are going to do is to let QGIS know about the relations between the layer. This is done in $Settings \rightarrow Project\ Properties$. Open the Relations menu and click on Add. - name is going to be used as a title. It should be a human readable string, describing, what the relation is used for. We will just call say "Airports" in this case. - referencing layer is the one with the foreign key field on it. In our case this is the airports layer - referencing field will say, which field points to the other layer so this is fk region in this case - referenced layer is the one with the primary key, pointed to, so here it is the regions layer - referenced field is the primary key of the referenced layer so it is ID - id will be used for internal purposes and has to be unique. You may need it to build custom forms once this is supported. If you leave it empty, one will be generated for you but you can assign one yourself to get one that is easier to handle. ## **Forms** Now that QGIS knows about the relation, it will be used to improve the forms it generates. As we did not change the default form method (autogenerated) it will just add a new widget in our form. So let's select the layer region in the legend and use the identify tool. Depending on your settings, the form might open directly or you will have to choose to open it in the identification dialog under actions. As you can see, the airports assigned to this particular region are all shown in a table. And there are also some buttons available. Let's review them shortly - The button is for toggling the edit mode. Be aware that it toggles the edit mode of the airport layer, although we are in the feature form of a feature from the region layer. But the table is representing features of the airport layer. - The button will add a new feature to the airport layer. And it will assign the new airport to the current region by default. - The button will delete the selected airport permanently. - The symbol will open a new dialog where you can select any existing airport which will then be assigned to the current region. This may be handy if you created the airport on the wrong region Рис. 12.41: Relation Manager 🚨 Рис. 12.42: Identification dialog regions with relation to airports Δ by accident. - The symbol will unlink the selected airport from the current region, leaving them unassigned (the foreign key is set to NULL) effectively. - The two buttons to the right switch between table view and form view where the later let's you view all the airports in their respective form. If you work on the airport table, a new widget type is available which lets you embed the feature form of the referenced region on the feature form of the airports. It can be used when you open the layer properties of the airports table, switch to the Fields menu and change the widget type of the foreign key field 'fk region' to Relation Reference. If you look at the feature dialog now, you will see, that the form of the region is embedded inside the airports form and will even have a combobox, which allows you to assign the current airport to another region. Рис. 12.43: Identification dialog airport with relation to regions 🚨 # 12.4 Конструктор поисковых запросов The Query Builder allows you to define a subset of a table using a SQL-like WHERE clause and to display the result in the main window. The query result can then be saved as a new vector layer. ## 12.4.1 Запрос Open the Query Builder by opening the Layer Properties and going to the General menu. Under Feature subset, click on the [Query Builder] button to open the Query builder. For example, if you have a regions layer with a TYPE_2 field, you could select only regions that are borough in the Provider specific filter expression box of the Query Builder. Figure attributes 2 shows an example of the Query Builder populated with the regions.shp layer from the QGIS sample data. The Fields, Values and Operators sections help you to construct the SQL-like query. The Fields list contains all attribute columns of the attribute table to be searched. To add an attribute column to the SQL WHERE clause field, double click its name in the Fields list. Generally, you can use the various fields, values and operators to construct the query, or you can just type it into the SQL box. The Values list lists the values of an attribute table. To list all possible values of an attribute, select the attribute in the Fields list and click the [all] button. To list the first 25 unique values of an attribute column, select the attribute column in the Fields list and click the [Sample] button. To add a value to the SQL WHERE clause field, double click its name in the Values list. Рис. 12.44: Конструктор
запросов 🚨 The **Operators section** contains all usable operators. To add an operator to the SQL WHERE clause field, click the appropriate button. Relational operators (= , > , ...), string comparison operator (LIKE), and logical operators (AND, OR, ...) are available. The [Test] button shows a message box with the number of features satisfying the current query, which is useful in the process of query construction. The [Clear] button clears the text in the SQL WHERE clause text field. The [OK] button closes the window and selects the features satisfying the query. The [Cancel] button closes the window without changing the current selection. ## 12.4.2 Save selected features as new layer The selected features can be saved as any OGR-supported vector format and also transformed into another coordinate reference system (CRS). Just open the right mouse menu of the layer and click on Save selection $as \to to$ define the name of the output file, its format and CRS (see section $\pi e ren da$). It is also possible to specify OGR creation options within the dialog. # 12.5 Калькулятор полей The Field Calculator button in the attribute table allows you to perform calculations on the basis of existing attribute values or defined functions, for instance, to calculate length or area of geometry features. The results can be written to a new attribute column, or they can be used to update values in an existing column. You will need to bring the vector layer into editing mode, before you can click on the field calculator icon to open the dialog (see figure_attributes_3). In the dialog, you first must select whether you want to only update selected features, create a new attribute field where the results of the calculation will be added or update an existing field. Рис. 12.45: Калькулятор полей 🗘 If you choose to add a new field, you need to enter a field name, a field type (integer, real or string), the total field width, and the field precision (see figure_attributes_3). For example, if you choose a field width of 10 and a field precision of 3, it means you have 6 digits before the dot, then the dot and another 3 digits for the precision. The **Function List** contains functions as well as fields and values. View the help function in the **Selected Function Help**. In **Expression** you see the calculation expressions you create with the **Function List**. For the most commonly used operators, see **Operators**. In the **Function List**, click on *Fields and Values* to view all attributes of the attribute table to be searched. To add an attribute to the Field calculator **Expression** field, double click its name in the *Fields and Values* list. Generally, you can use the various fields, values and functions to construct the calculation expression, or you can just type it into the box. To display the values of a field, you just right click on the appropriate field. You can choose between *Load top 10 unique values* and *Load all unique values*. On the right side, the **Field Values** list opens with the unique values. To add a value to the Field calculator **Expression** box, double click its name in the **Field Values** list. The Operators, Math, Conversions, String, Geometry and Record groups provide several functions. In Operators, you find mathematical operators. Look in Math for mathematical functions. The Conversions group contains functions that convert one data type to another. The String group provides functions for data strings. In the Geometry group, you find functions for geometry objects. With Record group functions, you can add a numeration to your data set. To add a function to the Field calculator Expression box, click on the > and then double click the function. Приведём небольшой пример использования калькулятора поле». Рассмотрим процесс расчёта длины объектов слоя railroads из демонстрационного набора данных QGIS: - 1. Load the shapefile railroads.shp in QGIS and press Open Attribute Table. - 2. Включите / Режим редактирования и вызовите Калькулятор полей. - 3. Select the Create a new field checkbox to save the calculations into a new field. - 4. Add length as Output field name and real as Output field type, and define Output field width to be 10 and Precision, 3. - 5. Now double click on function \$length in the *Geometry* group to add it into the Field calculator expression box. - 6. Дополните выражение, введя / 1000 в поле Выражение и нажмите [ОК]. - 7. You can now find a new column length in the attribute table. The available functions are listed below. The field calculator Function list with the Selected Function Help, Operators and Expression menu are also available through the rule-based rendering in the Style menu of the Layer properties, and the expression-based labeling in the Labeling core application. #### **Operators** This group contains operators (e.g., +, -, *). ``` a + b a plus b a - b a minus b a * b a multiplied by b a / b a divided by b a % b a modulo b (for example, 7 \% 2 = 1, or 2 fits into 7 three times with remainder 1) a ^ b a power b (for example, 2^2=4 or 2^3=8) a = b a and b are equal a > b a is larger than b a < b a is smaller than b a <> b a and b are not equal a != b a and b are not equal a <= b {\tt a} is less than or equal to {\tt b} a >= b a is larger than or equal to b a ~ b a matches the regular expression b positive sign + a - a negative value of a 11 joins two values together into a string 'Hello' || ' world' LIKE returns 1 if the string matches the supplied pattern ILIKE returns 1 if the string matches case-insensitive the supplied pattern (ILIKE can be used instead of LIKE to make the match case-insensitive) IS returns 1 if a is the same as b OR. returns 1 when condition a or b is true AND returns 1 when condition a and b are true NOT returns 1 if a is not the same as b column name "column name" value of the field column name 'string' a string value NULL null value a IS NULL a has no value a IS NOT NULL a has a value a IN (value[,value]) a is below the values listed a NOT IN (value[,value]) a is not below the values listed ``` ### Conditionals This group contains functions to handle conditional checks in expressions. ``` CASE evaluates multiple expressions and returns a result CASE ELSE evaluates multiple expressions and returns a result coalesce returns the first non-NULL value from the expression list regexp_match returns true if any part of a string matches the supplied regular expression ``` ## **Mathematical Functions** This group contains math functions (e.g., square root, sin and cos). sqrt(a) square root of a abs returns the absolute value of a number sin(a) sine of a cos(a) cosine of a tan(a) tangent of a asin(a) arcsin of a acos(a) arccos of a atan(a) arctan of a atan2(y,x)arctan of y/x using the signs of the two arguments to determine the quadrant of the result ехр exponential of a value value of the natural logarithm of the passed expression ln value of the base 10 logarithm of the passed expression log10 value of the logarithm of the passed value and base log round to number of decimal places round randrandom integer within the range specified by the minimum and maximum argument (inclusive) randf random float within the range specified by the minimum and maximum argument (inclusive) max largest value in a set of values min smallest value in a set of values clamp restricts an input value to a specified range scale_linear transforms a given value from an input domain to an output range using linear interpolation transforms a given value from an input domain to an output scale_exp range using an exponential curve floor rounds a number downwards ceil rounds a number upwards \$pi pi as value for calculations ### Conversions This group contains functions to convert one data type to another (e.g., string to integer, integer to string). toint converts a string to integer number toreal converts a string to real number tostring converts number to string todatetime converts a string into Qt data time type todate converts a string into Qt data type totime converts a string into Qt time type tointerval converts a string to an interval type (can be used to take days, hours, months, etc. off a date) #### **Date and Time Functions** This group contains functions for handling date and time data. \$now current date and time difference between two dates age extract the year part from a date, or the number of years from an interval year month extract the month part from a date, or the number of months from an interval week extract the week number from a date, or the number of weeks from an interval day extract the day from a date, or the number of days from an interval hour extract the hour from a datetime or time, or the number of hours from an interval extract the minute from a datetime or time, or the number minute of minutes from an interval extract the second from a datetime or time, or the number second of minutes from an interval ### **String Functions** This group contains functions that operate on strings (e.g., that replace, convert to upper case). lower convert string a to lower case upper convert string a to upper case title converts all words of a string to title case (all words lower case with leading capital letter) trim removes all leading and trailing white space (spaces, tabs, etc.) from a string length length of string a returns a string with the supplied string replaced replace regexp_replace(a,this,that) returns a string with the supplied regular expression replaced returns the portion of a string which matches a supplied regular expression regexp_substr substr(*a*,from,len) returns a part of a string concatenates several strings to one concat returns the index of a regular expression in a string strpos left returns a substring that contains the n leftmost characters of the string right returns a substring that contains the n rightmost characters of the string rpad returns a string with supplied width padded using the fill character lpad returns
a string with supplied width padded using the fill character format formats a string using supplied arguments format_number returns a number formatted with the locale separator for thousands (also truncates the number to the number of supplied places) format_date formats a date type or string into a custom string format #### Color Functions This group contains functions for manipulating colors. color_rgb returns a string representation of a color based on its red, green, and blue components returns a string representation of a color based on its red, green, color_rgba blue, and alpha (transparency) components ramp_color returns a string representing a color from a color ramp color_hsl returns a string representation of a color based on its hue, saturation, and lightness attributes color_hsla returns a string representation of a color based on its hue, saturation, lightness and alpha (transparency) attributes color_hsv returns a string representation of a color based on its hue, saturation, and value attributes returns a string representation of a color based on its hue, saturation, color_hsva value and alpha (transparency) attributes returns a string representation of a color based on its cyan, magenta, color_cmyk yellow and black components color_cmyka returns a string representation of a color based on its cyan, magenta, yellow, black and alpha (transparency) components ### **Geometry Functions** This group contains functions that operate on geometry objects (e.g., length, area). xat retrieves an x coordinate of the current feature retrieves a y coordinate of the current feature yat \$area returns the area size of the current feature \$length returns the length size of the current feature \$perimeter returns the perimeter length of the current feature returns the \boldsymbol{x} coordinate of the current feature \$x returns the y coordinate of the current feature \$у returns the geometry of the current feature (can be used \$geometry for processing with other functions) geomFromWKT returns a geometry created from a well-known text (WKT) representation geomFromGML returns a geometry from a GML representation of geometry bbox disjoint returns 1 if the geometries do not share any space together intersects returns 1 if the geometries spatially intersect (share any portion of space) and 0 if they don't touches returns 1 if the geometries have at least one point in common, but their interiors do not intersect crosses returns 1 if the supplied geometries have some, but not all, interior points in common contains returns true if and only if no points of b lie in the exterior of a, and at least one point of the interior of b lies in the interior of a overlaps returns 1 if the geometries share space, are of the same dimension, but are not completely contained by each other within returns 1 if geometry a is completely inside geometry b buffer returns a geometry that represents all points whose distance from this geometry is less than or equal to distance centroid returns the geometric center of a geometry convexHull returns the convex hull of a geometry (this represents the minimum convex geometry that encloses all geometries within the set) difference returns a geometry that represents that part of geometry a that does not intersect with geometry b distance returns the minimum distance (based on spatial ref) between two geometries in projected units intersection returns a geometry that represents the shared portion of geometry a and geometry b symDifference returns a geometry that represents the portions of a and b that do not intersect combine returns the combination of geometry a and geometry b union returns a geometry that represents the point set union of the geometries geomToWKT returns the well-known text (WKT) representation of the geometry without SRID metadata #### **Record Functions** This group contains functions that operate on record identifiers. \$rownum returns the number of the current row \$id returns the feature id of the current row \$scale returns the current scale of the map canvas #### Fields and Values Contains a list of fields from the layer. Sample values can also be accessed via right-click. Select the field name from the list, then right-click to access a context menu with options to load sample values from the selected field. . ## Работа с растровыми данными . ## 13.1 Работа с растровыми данными This section describes how to visualize and set raster layer properties. QGIS uses the GDAL library to read and write raster data formats, including ArcInfo Binary Grid, ArcInfo ASCII Grid, GeoTIFF, ERDAS IMAGINE, and many more. GRASS raster support is supplied by a native QGIS data provider plugin. The raster data can also be loaded in read mode from zip and gzip archives into QGIS. As of the date of this document, more than 100 raster formats are supported by the GDAL library (see GDAL-SOFTWARE-SUITE in *Humepamypa u ccunku na web-pecypcu*). A complete list is available at http://www.gdal.org/formats list.html. Примечание: Not all of the listed formats may work in QGIS for various reasons. For example, some require external commercial libraries, or the GDAL installation of your OS may not have been built to support the format you want to use. Only those formats that have been well tested will appear in the list of file types when loading a raster into QGIS. Other untested formats can be loaded by selecting the [GDAL] All files (*) filter. Working with GRASS raster data is described in section *Mumerpayum c GRASS GIS*. ## 13.1.1 Что такое растровые данные? Raster data in GIS are matrices of discrete cells that represent features on, above or below the earth's surface. Each cell in the raster grid is the same size, and cells are usually rectangular (in QGIS they will always be rectangular). Typical raster datasets include remote sensing data, such as aerial photography, or satellite imagery and modelled data, such as an elevation matrix. Unlike vector data, raster data typically do not have an associated database record for each cell. They are geocoded by pixel resolution and the x/y coordinate of a corner pixel of the raster layer. This allows QGIS to position the data correctly in the map canvas. QGIS makes use of georeference information inside the raster layer (e.g., GeoTiff) or in an appropriate world file to properly display the data. ## 13.1.2 Загрузка растровых данных в QGIS Raster layers are loaded either by clicking on the $^{\text{Add Raster Layer}}$ icon or by selecting the $Layer \rightarrow Add$ Raster Layer menu option. More than one layer can be loaded at the same time by holding down the Ctrl or Shift key and clicking on multiple items in the Open a GDAL Supported Raster Data Source dialog. Once a raster layer is loaded in the map legend, you can click on the layer name with the right mouse button to select and activate layer-specific features or to open a dialog to set raster properties for the layer. #### Контекстное меню для растровых слоев - Zoom to Layer Extent - Увеличить до наилучшего масштаба (100%) - Stretch Using Current Extend - Показать в обзоре - Удалить - Дублировать - Изменить систему координат - Выбрать систему координат слоя для проекта - Сохранить как... - Свойства - Переименовать - Копировать стиль - Добавить группу - Развернуть все - Свернуть все - Обновлять порядок отрисовки # 13.2 Свойства растра To view and set the properties for a raster layer, double click on the layer name in the map legend, or right click on the layer name and choose *Properties* from the context menu. This will open the *Raster Layer Properties* dialog (see figure raster 1). There are several menus in the dialog: - Общие - Стиль - Прозрачность - Пирамиды - Гистограмма - Метаданные 132 Рис. 13.1: Свойства растрового слоя 🗘 ## 13.2.1 General Menu ## Layer Info The *General* menu displays basic information about the selected raster, including the layer source path, the display name in the legend (which can be modified), and the number of columns, rows and no-data values of the raster. ### Coordinate reference system Here, you find the coordinate reference system (CRS) information printed as a PROJ.4 string. If this setting is not correct, it can be modified by clicking the [Specify] button. ## Scale Dependent visibility Additionally scale-dependent visibility can be set in this tab. You will need to check the checkbox and set an appropriate scale where your data will be displayed in the map canvas. At the bottom, you can see a thumbnail of the layer, its legend symbol, and the palette. ## 13.2.2 Style Menu #### **Band rendering** QGIS offers four different Render types. The renderer chosen is dependent on the data type. - 1. Multiband color if the file comes as a multiband with several bands (e.g., used with a satellite image with several bands) - 2. Paletted if a single band file comes with an indexed palette (e.g., used with a digital topographic map) - 3. Singleband gray (one band of) the image will be rendered as gray; QGIS will choose this renderer if the file has neither multibands nor an indexed palette nor a continuous palette (e.g., used with a shaded relief map) - 4. Singleband pseudocolor this renderer is possible for files with a continuous palette, or color map (e.g., used with an elevation map) #### Multiband color With the multiband color renderer, three selected bands from the image will be rendered, each band representing the red, green or blue component that will be used to create a color image. You can choose several *Contrast enhancement* methods: 'No enhancement', 'Stretch to MinMax', 'Stretch and clip to MinMax' and 'Clip to min max'. Рис. 13.2: Raster Renderer - Multiband color 🕹 This selection offers you a wide range of options to modify the appearance of your raster layer. First of all, you have to get the data range from your image. This can be done by choosing the *Extent* and pressing [Load]. QGIS can Estimate (faster) the Min and Max values of the bands or use
the Actual (slower) Accuracy. All calculations can also be made for the *Current* extent. ## Совет: Просмотр одного канала многоканального растра If you want to view a single band of a multiband image (for example, Red), you might think you would set the Green and Blue bands to "Not Set". But this is not the correct way. To display the Red band, set the image type to 'Singleband gray', then select Red as the band to use for Gray. #### Paletted This is the standard render option for singleband files that already include a color table, where each pixel value is assigned to a certain color. In that case, the palette is rendered automatically. If you want to change colors assigned to certain values, just double-click on the color and the *Select color* dialog appears. Also, in QGIS 2.2. it's now possible to assign a label to the color values. The label appears in the legend of the raster layer then. Рис. 13.3: Raster Renderer - Paletted 🚨 ## Улучшение контраста Примечание: When adding GRASS rasters, the option *Contrast enhancement* will always be set automatically to *stretch to min max*, regardless of if this is set to another value in the QGIS general options. #### Singleband gray This renderer allows you to render a single band layer with a *Color gradient*: 'Black to white' or 'White to black'. You can define a *Min* and a *Max* value by choosing the *Extent* first and then pressing [Load]. QGIS can Estimate (faster) the *Min* and *Max* values of the bands or use the Actual (slower) Accuracy. With the Load min/max values section, scaling of the color table is possible. Outliers can be eliminated using the Cumulative count cut setting. The standard data range is set from 2% to 98% of the data values and can be adapted manually. With this setting, the gray character of the image can disappear. Further settings can be made with Min/max and Mean +/- standard deviation x while the first one creates a color table with all of the data included in the original image, the second creates a color table that only considers values within the standard deviation or within multiple standard deviations. This is useful when you have one or two cells with abnormally high values in a raster grid that are having a negative impact on the rendering of the raster. ## Singleband pseudocolor This is a render option for single-band files, including a continous palette. You can also create individual color maps for the single bands here. Three types of color interpolation are available: 1. Дискретная Рис. 13.4: Raster Renderer - Singleband gray 🚨 Рис. 13.5: Raster Renderer - Singleband pseudocolor 🚨 - 2. Линейная - 3. Точная In the left block, the button Add values manually adds a value to the individual color table. The button Remove selected row deletes a value from the individual color table, and the Sort colormap items button sorts the color table according to the pixel values in the value column. Double clicking on the value column lets you insert a specific value. Double clicking on the color column opens the dialog Change color, where you can select a color to apply on that value. Further, you can also add labels for each color, but this value won't be displayed when you use the identify feature tool. You can also click on the button Load color map from band, which tries to load the table from the band (if it has any). And you can use the buttons Load color map from file or Export color map to file to load an existing color table or to save the defined color table for other sessions. In the right block, Generate new color map allows you to create newly categorized color maps. For the Classification mode 'Equal interval', you only need to select the number of classes 1.00 and press the button Classify. You can invert the colors of the color map by clicking the Invert checkbox. In the case of the Mode 'Continous', QGIS creates classes automatically depending on the Min and Max. Defining Min/Max values can be done with the help of the Load min/max values section. A lot of images have a few very low and high data. These outliers can be eliminated using the Cumulative count cut setting. The standard data range is set from 2% to 98% of the data values and can be adapted manually. With this setting, the gray character of the image can disappear. With the scaling option Min/max, QGIS creates a color table with all of the data included in the original image (e.g., QGIS creates a color table with 256 values, given the fact that you have 8 bit bands). You can also calculate your color table using the Mean +/- standard deviation x 1.00 and 1.00 the values within the standard deviation or within multiple standard deviations are considered for the color table. ## Color rendering For every Band rendering, a Color rendering is possible. You can also achieve special rendering effects for your raster file(s) using one of the blending modes (see Cβοῦcmβα βεκπορμοΐο cλοπ). Further settings can be made in modifiying the *Brightness*, the *Saturation* and the *Contrast*. You can also use a *Grayscale* option, where you can choose between 'By lightness', 'By luminosity' and 'By average'. For one hue in the color table, you can modify the 'Strength'. ### Resampling The *Resampling* option makes its appearance when you zoom in and out of an image. Resampling modes can optimize the appearance of the map. They calculate a new gray value matrix through a geometric transformation. When applying the 'Nearest neighbour' method, the map can have a pixelated structure when zooming in. This appearance can be improved by using the 'Bilinear' or 'Cubic' method, which cause sharp features to be blurred. The effect is a smoother image. This method can be applied, for instance, to digital topographic raster maps. ## 13.2.3 Transparency Menu QGIS has the ability to display each raster layer at a different transparency level. Use the transparency slider to indicate to what extent the underlying layers (if any) should be visible though the current raster layer. This is very useful if you like to overlay more than one raster layer (e.g., Рис. 13.6: Raster Rendering - Resampling 🚨 a shaded relief map overlayed by a classified raster map). This will make the look of the map more three dimensional. Additionally, you can enter a raster value that should be treated as NODATA in the $Additional\ no\ data\ value\ menu.$ Более гибко степень прозрачности можно настроить в панели *Параметры прозрачности*, которая позволяет указать индивидуальную прозрачность каждого пикселя. As an example, we want to set the water of our example raster file landcover.tif to a transparency of 20%. The following steps are neccessary: - 1. Load the raster file landcover.tif. - 2. Open the *Properties* dialog by double-clicking on the raster name in the legend, or by right-clicking and choosing *Properties* from the pop-up menu. - 3. Select the *Transparency* menu. - 4. From the Transparency band menu, choose 'None'. - 5. Click the Add values manually button. A new row will appear in the pixel list. - 6. Enter the raster value in the 'From' and 'To' column (we use 0 here), and adjust the transparency to 20%. - 7. Нажать [Применить] и посмотреть результат на карте. You can repeat steps 5 and 6 to adjust more values with custom transparency. As you can see, it is quite easy to set custom transparency, but it can be quite a lot of work. Therefore, you can use the button Export to file to save your transparency list to a file. The button Import from file loads your transparency settings and applies them to the current raster layer. ## 13.2.4 Pyramids Menu Large resolution raster layers can slow navigation in QGIS. By creating lower resolution copies of the data (pyramids), performance can be considerably improved, as QGIS selects the most suitable resolution to use depending on the level of zoom. Для сохранения пирамид необходимы права на запись в каталог, в котором хранятся оригинальные данные. При построении пирамид можно выбрать один из алгоритмов пересчета: • Ближайший сосед - Среднее значение - Gauss - Cubic - Mode - None If you choose 'Internal (if possible)' from the *Overview format* menu, QGIS tries to build pyramids internally. You can also choose 'External' and 'External (Erdas Imagine)'. Рис. 13.7: The Pyramids Menu 🚨 Please note that building pyramids may alter the original data file, and once created they cannot be removed. If you wish to preserve a 'non-pyramided' version of your raster, make a backup copy prior to building pyramids. ### 13.2.5 Histogram Menu The *Histogram* menu allows you to view the distribution of the bands or colors in your raster. The histogram is generated automatically when you open the *Histogram* menu. All existing bands will be displayed together. You can save the histogram as an image with the button. With the *Visibility* option in the *Prefs/Actions* menu, you can display histograms of the individual bands. You will need to select the option *Show selected band*. The *Min/max options* allow you to 'Always show min/max markers', to 'Zoom to min/max' and to 'Update style to min/max'. With the *Actions* option, you can 'Reset' and 'Recompute histogram' after you have chosen the *Min/max options*. #### 13.2.6 Metadata Menu The *Metadata* menu displays a wealth of information about the raster layer, including statistics about each band in the current raster layer. From this menu, entries may be made for the *Description*, *Attribution*, *MetadataUrl* and *Properties*. In *Properties*, statistics are gathered on a 'need to know' basis, so it may well be that a given layer's statistics have not yet been collected. Рис. 13.8: Raster Histogram 🚨 Рис. 13.9: Raster Metadata 🚨 . # 13.3 Калькулятор растров The Raster Calculator in the Raster menu allows you to perform calculations on the basis of existing raster pixel values (see figure _raster _2 _). The results are written to a new raster layer with a GDAL-supported format. Рис. 13.10: Калькулятор растров 🚨 The **Raster
bands** list contains all loaded raster layers that can be used. To add a raster to the raster calculator expression field, double click its name in the Fields list. You can then use the operators to construct calculation expressions, or you can just type them into the box. In the **Result layer** section, you will need to define an output layer. You can then define the extent of the calculation area based on an input raster layer, or based on X,Y coordinates and on columns and rows, to set the resolution of the output layer. If the input layer has a different resolution, the values will be resampled with the nearest neighbor algorithm. The **Operators** section contains all available operators. To add an operator to the raster calculator expression box, click the appropriate button. Mathematical calculations (+, -, *, ...) and trigonometric functions (sin, cos, tan, ...) are available. Stay tuned for more operators to come! With the Add result to project checkbox, the result layer will automatically be added to the legend area and can be visualized. ### 13.3.1 Примеры Convert elevation values from meters to feet Creating an elevation raster in feet from a raster in meters, you need to use the conversion factor for meters to feet: 3.28. The expression is: ``` "elevation@1" * 3.28 ``` #### Использование маски If you want to mask out parts of a raster - say, for instance, because you are only interested in elevations above 0 meters - you can use the following expression to create a mask and apply the result to a raster in one step. ``` ("elevation@1" >= 0) * "elevation@1" ``` In other words, for every cell greater than or equal to 0, set its value to 1. Otherwise set it to 0. This creates the mask on the fly. . # Работа с данными OGC . # 14.1 QGIS как клиент OGC The Open Geospatial Consortium (OGC) is an international organization with membership of more than 300 commercial, governmental, nonprofit and research organizations worldwide. Its members develop and implement standards for geospatial content and services, GIS data processing and exchange. Describing a basic data model for geographic features, an increasing number of specifications are developed by OGC to serve specific needs for interoperable location and geospatial technology, including GIS. Further information can be found at http://www.opengeospatial.org/. Наиболее важные спецификации OGC: - WMS Web Map Service (Клиент WMS/WMTS) - WMTS Web Map Tile Service (Knuehm WMS/WMTS) - WFS Web Feature Service (Клиент WFS и WFS-T) - WFS-T Web Feature Service Transactional (Клиент WFS и WFS-T) - WCS Web Coverage Service (Клиент WCS) - SFS Simple Features for SQL (Cnou PostGIS) - GML Geography Markup Language OGC services are increasingly being used to exchange geospatial data between different GIS implementations and data stores. QGIS can deal with the above specifications as a client, being **SFS** (through support of the PostgreSQL / PostGIS data provider, see section *Chou PostGIS*). ### 14.1.1 Клиент WMS/WMTS ### Обзор поддержки WMS QGIS currently can act as a WMS client that understands WMS 1.1, 1.1.1 and 1.3 servers. In particular, it has been tested against publicly accessible servers such as DEMIS. A WMS server acts upon requests by the client (e.g., QGIS) for a raster map with a given extent, set of layers, symbolization style, and transparency. The WMS server then consults its local data sources, rasterizes the map, and sends it back to the client in a raster format. For QGIS, this format would typically be JPEG or PNG. WMS is generically a REST (Representational State Transfer) service rather than a full-blown Web service. As such, you can actually take the URLs generated by QGIS and use them in a web browser to retrieve the same images that QGIS uses internally. This can be useful for troubleshooting, as there are several brands of WMS server on the market and they all have their own interpretation of the WMS standard. WMS-слои добавляются очень просто, необходимо только знать URL WMS-сервера, иметь с ним связь и возможность использования сервером протокола HTTP в качестве механизма передачи данных. #### Обзор поддержки WMTS QGIS can also act as a WMTS client. WMTS is an OGC standard for distributing tile sets of geospatial data. This is a faster and more efficient way of distributing data than WMS because with WMTS, the tile sets are pre-generated, and the client only requests the transmission of the tiles, not their production. A WMS request typically involves both the generation and transmission of the data. A well-known example of a non-OGC standard for viewing tiled geospatial data is Google Maps. Чтобы отображать данные в масштабе максимально приближённом к заданному пользователем, тайлы WMTS генерируются для различных масштабных уровней. Затем тайлы отдаются ГИС, запросившей их. Следующий рисунок иллюстрирует концепцию набора тайлов: Рис. 14.1: Концепция набора тайлов WMTS The two types of WMTS interfaces that QGIS supports are via Key-Value-Pairs (KVP) and RESTful. These two interfaces are different, and you need to specify them to QGIS differently. 1) In order to access a **WMTS KVP** service, a QGIS user must open the WMS/WMTS interface and add the following string to the URL of the WMTS tile service: "?SERVICE=WMTS&REQUEST=GetCapabilities" An example of this type of address is http://opencache.statkart.no/gatekeeper/gk/gk.open_wmts?\service=WMTS&request=GetCapabilities For testing the topo2 layer in this WMTS works nicely. Adding this string indicates that a WMTS web service is to be used instead of a WMS service. 2. The **RESTful WMTS** service takes a different form, a straightforward URL. The format recommended by the OGC is: {WMTSBaseURL}/1.0.0/WMTSCapabilities.xml This format helps you to recognize that it is a RESTful address. A RESTful WMTS is accessed in QGIS by simply adding its address in the WMS setup in the URL field of the form. An example of this type of address for the case of an Austrian basemap is http://maps.wien.gv.at/basemap/1.0.0/WMTSCapabilities.xml. Примечание: You can still find some old services called WMS-C. These services are quite similar to WMTS (i.e., same purpose but working a little bit differently). You can manage them the same as you do WMTS services. Just add ?tiled=true at the end of the url. See http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification for more information about this specification. When you read WMTS, you can often think WMS-C also. ### Выбор WMS/WMTS-серверов The first time you use the WMS feature in QGIS, there are no servers defined. Begin by clicking the $^{\text{Add WMS layer}}$ button on the toolbar, or selecting $Layer \rightarrow Add \ WMS \ Layer...$ The dialog Add Layer(s) from a Server for adding layers from the WMS server appears. You can add some servers to play with by clicking the [Add default servers] button. This will add two WMS demo servers for you to use: the WMS servers of the DM Solutions Group and Lizardtech. To define a new WMS server in the Layers tab, select the [New] button. Then enter the parameters to connect to your desired WMS server, as listed in table OGC 1: | Then enter the parameters to connect to your desired with server, as instead in table_ode_1. | | | |--|---|--| | Имя | A name for this connection. This name will be used in the Server | | | | Connections drop-down box so that you can distinguish it from other WMS servers. | | | URL | URL of the server providing the data. This must be a resolvable host name | | | | - the same format as you would use to open a telnet connection or ping a | | | | host. | | | Пользователь | Username to access a secured WMS server. This parameter is optional. | | | Пароль | Password for a basic authenticated WMS server. This parameter is optional. | | | Игнорировать URI
запроса GetMap | ■ Ignore GetMap URI reported in capabilities. Use given URI from URL field above. | | | Игнорировать URI | ■ Ignore GetFeatureInfo URI reported in capabilities. Use given URI from | | | запроса | URL field above. | | | GetFeatureInfo | | | Таблица OGC 1: Параметры WMS-соединения If you need to set up a proxy server to be able to receive WMS services from the internet, you can add your proxy server in the options. Choose Settings o Options and click on the $Network ext{ } extstyle extstyle Proxy$ tab. There, you can add your proxy settings and enable them by setting extstyle extst Once the new WMS server connection has been created, it will be preserved for future QGIS sessions. #### Cobet: URL WMS серверов Be sure, when entering the WMS server URL, that you have the base URL only. For example, you shouldn't have fragments such as request=GetCapabilities or version=1.0.0 in your URL. ### Загрузка WMS/WMTS-слоёв Once you have successfully filled in your parameters, you can use the [Connect] button to retrieve the capabilities of the selected server. This includes the image encoding, layers, layer styles and projections. Since this is a network operation, the speed of the response depends on the quality of your network connection to the WMS server. While downloading data from the WMS server, the download progress is visualized in the lower left of the WMS dialog. Содержимое экрана должно быть похожим на рисунок figure OGR 1, на котором представлены данные, доступные на WMS сервере DM Solutions Group. Рис. 14.2: Диалоговое окно добавления WMS-сервера, представлены доступные слои 🚨 ### Формат изображений The Image encoding section lists the formats that are supported by both the client and server. Choose one depending on your image accuracy requirements. ### Совет: Формат изображений Обычно WMS-серверы предлагают на выбор один из двух форматов — JPEG или PNG. JPEG это формат, использующий алгоритм
сжатия с потерями, в то время как PNG — без потерь. Use JPEG if you expect the WMS data to be photographic in nature and/or you don't mind some loss in picture quality. This trade-off typically reduces by five times the data transfer requirement compared with PNG. Use PNG if you want precise representations of the original data and you don't mind the increased data transfer requirements. #### Параметры The Options area of the dialog provides a text field where you can add a Layer name for the WMS layer. This name will appear in the legend after loading the layer. Below the layer name, you can define Tile size if you want to set tile sizes (e.g., 256x256) to split up the WMS request into multiple requests. Поле *Максимально количество объектов в GetFeatureInfo* задает число объектов, запрашиваемых у сервера. If you select a WMS from the list, a field with the default projection provided by the mapserver appears. If the [Change...] button is active, you can click on it and change the default projection of the WMS to another CRS provided by the WMS server. #### Слои The Layer Order tab lists the selected layers available from the current connected WMS server. You may notice that some layers are expandable; this means that the layer can be displayed in a choice of image styles. You can select several layers at once, but only one image style per layer. When several layers are selected, they will be combined at the WMS server and transmitted to QGIS in one go. ### Совет: Порядок WMS-слоёв WMS layers rendered by a server are overlaid in the order listed in the Layers section, from top to bottom of the list. If you want to change the overlay order, you can use the *Layer Order* tab. ### Прозрачность In this version of QGIS, the *Global transparency* setting from the *Layer Properties* is hard coded to be always on, where available. ### Совет: Прозрачность WMS-слоёв Доступность прозрачности WMS-слоёв зависит от используемого формата изображения: так PNG и GIF поддерживают прозрачность, в то время как JPEG — нет. #### Система координат A coordinate reference system (CRS) is the OGC terminology for a QGIS projection. Each WMS layer can be presented in multiple CRSs, depending on the capability of the WMS server. To choose a CRS, select [Change...] and a dialog similar to Figure Projection 3 in *Работа с проекциями* will appear. The main difference with the WMS version of the dialog is that only those CRSs supported by the WMS server will be shown. #### Поиск серверов Within QGIS, you can search for WMS servers. Figure_OGC_2 shows the Server Search tab with the Add Layer(s) from a Server dialog. As you can see, it is possible to enter a search string in the text field and hit the [Search] button. After a short while, the search result will be populated into the list below the text field. Browse the result list and inspect your search results within the table. To visualize the results, select a table entry, press the [Add selected row to WMS list] button and change back to the Layers tab. QGIS has automatically updated your server list, and the selected search result is already enabled in the list of saved WMS servers in the Layers tab. You only need to request the list of layers by clicking the [Connect] button. This option is quite handy when you want to search maps by specific keywords. Basically, this option is a front end to the API of http://geopole.org. #### Мозаики When using WMTS (Cached WMS) services like http://opencache.statkart.no/gatekeeper/gk/gk.open_wmts?\service=WMTS&request=GetCapabilities Рис. 14.3: Поиск WMS-серверов по ключевым словам 🚨 you are able to browse through the Tilesets tab given by the server. Additional information like tile size, formats and supported CRS are listed in this table. In combination with this feature, you can use the tile scale slider by selecting $Settings \rightarrow Panels$ (KDE and Windows) or $View \rightarrow Panels$ (Gnome and MacOSX), then choosing $Tile\ scale$. This gives you the available scales from the tile server with a nice slider docked in. ### Использование инструмента определения объектов Если слой, предоставляемый WMS-сервером, даёт возможность осуществления запросов, то появляется возможность использовать инструмент объекты для получения информации о пикселах карты. При каждой попытке получения такой информации происходит обращение к WMS-серверу. Результат запроса представляется в виде простого текста, а его форматирование определяется настройками того или иного WMS-сервера. Выбор формата If multiple output formats are supported by the server, a combo box with supported formats is automatically added to the identify results dialog and the selected format may be stored in the project for the layer. Поддержка формата GML The Identify tool supports WMS server response (GetFeatureInfo) in GML format (it is called Feature in the QGIS GUI in this context). If "Feature" format is supported by the server and selected, results of the Identify tool are vector features, as from a regular vector layer. When a single feature is selected in the tree, it is highlighted in the map and it can be copied to the clipboard and pasted to another vector layer. See the example setup of the UMN Mapserver below to support GetFeatureInfo in GML format. # in layer METADATA add which fields should be included and define geometry (example): ``` "gml_include_items" "all" "ows_geometries" "mygeom" "ows_mygeom_type" "polygon" ``` ``` # Then there are two possibilities/formats available, see a) and b): # a) basic (output is generated by Mapserver and does not contain XSD) # in WEB METADATA define formats (example): "wms_getfeatureinfo_formatlist" "application/vnd.ogc.gml,text/html" # b) using OGR (output is generated by OGR, it is send as multipart and contains XSD) # in MAP define OUTPUTFORMAT (example): OUTPUTFORMAT NAME "OGRGML" MIMETYPE "ogr/gml" DRIVER "OGR/GML" FORMATOPTION "FORM=multipart" END # in WEB METADATA define formats (example): "wms_getfeatureinfo_formatlist" "OGRGML,text/html" ``` #### Просмотр свойств Once you have added a WMS server, you can view its properties by right-clicking on it in the legend and selecting *Properties*. **Метаданные** The tab *Metadata* displays a wealth of information about the WMS server, generally collected from the capabilities statement returned from that server. Many definitions can be gleaned by reading the WMS standards (see OPEN-GEOSPATIAL-CONSORTIUM in *Jumepamypa u ссылки на web-pecypcu*), but here are a few handy definitions: #### • Свойства сервера - **Версия WMS** Версия WMS, поддерживаемая сервером. - **Форматы изображения** Список МІМЕ-типов, поддерживаемых сервером. QGIS доступны любые форматы, с поддержкой которых была собрана библиотека Qt, обычно это image/png и image/jpeg. - Identity Formats The list of MIME-types the server can respond with when you use the Identify tool. Currently, QGIS supports the text-plain type. #### • Свойства слоя - Выбранные слои Показывает, был или не был выбран слой при добавлении сервера в проект. - **Visible** Whether or not this layer is selected as visible in the legend (not yet used in this version of QGIS). - Можно определять Возможно или нет осуществлять запросы к слою с помощью инструмента идентификации. - Can be Transparent Whether or not this layer can be rendered with transparency. This version of QGIS will always use transparency if this is Yes and the image encoding supports transparency. - Можно увеличивать Доступна или нет возможность увеличения слоя на стороне сервера. Текущая версия QGIS подразумевает, что этот параметр для любого слоя установлен в значение Да. Не отвечающие данному требованию слои могут быть отрисованы некорректно. - **Количество каскадов** Одни WMS-серверы могут работать как прокси-серверы для других. Эта запись показывает, сколько раз запрос к данному серверу был послан на другие WMS-серверы до моментв получения результата. - **Фикс. ширина**, **Фикс. высота** Установлен или нет фиксированный размер слоя в пикселях. Текущая версия QGIS подразумевает, что этот параметр для любого слоя не установлен. Не отвечающие данному требованию слои могут быть отрисованы некорректно. - WGS 84 Bounding Box The bounding box of the layer, in WGS 84 coordinates. Some WMS servers do not set this correctly (e.g., UTM coordinates are used instead). If this is the case, then the initial view of this layer may be rendered with a very 'zoomed-out' appearance by QGIS. The WMS webmaster should be informed of this error, which they may know as the WMS XML elements LatLonBoundingBox, EX_GeographicBoundingBox or the CRS:84 BoundingBox. - Доступен в CRS Проекции, в которых слой может быть отрисован WMS-сервером. Перечислены в «родном» для WMS формате. - **Доступен в стилях** Стили в которых может быть отрисован слой WMS-сервером. ### Show WMS legend graphic in table of contents and composer The QGIS WMS data provider is able to display a legend graphic in the table of contents' layer list and in the map composer. The WMS legend will be shown only if the WMS server has GetLegendGraphic capability and the layer has getCapability url specified, so you additionally have to select a styling for the layer. If a legendGraphic is available, it is shown below the layer. It is little and you have to click on it to open it in real dimension (due to QgsLegendInterface architectural limitation). Clicking on the layer's legend will open a frame with the legend at full resolution. In the print composer, the legend will be integrated at it's original (dowloaded) dimension. Resolution of the legend graphic can be set in the item properties under Legend -> WMS LegendGraphic to match your printing requirements The legend will display contextual information based on your current scale. The WMS legend will be shown only if the WMS server has GetLegendGraphic capability and the layer has getCapability url specified, so you have to select a styling. ### Ограничения клиента WMS Not all possible WMS client
functionality had been included in this version of QGIS. Some of the more noteworthy exceptions follow. ### Редактирование свойств WMS-слоя Once you've completed the Add WMS layer procedure, there is no way to change the settings. A workaround is to delete the layer completely and start again. ### Защищённые WMS-серверы Currently, publicly accessible and secured WMS services are supported. The secured WMS servers can be accessed by public authentication. You can add the (optional) credentials when you add a WMS server. See section $Bubop\ WMS/WMTS$ -cepbepob for details. ### Совет: Доступ к защищённым слоям ОGC If you need to access secured layers with secured methods other than basic authentication, you can use InteProxy as a transparent proxy, which does support several authentication methods. More information can be found in the InteProxy manual at http://inteproxy.wald.intevation.org. ### Cobet: QGIS WMS Mapserver Since Version 1.7.0, QGIS has its own implementation of a WMS 1.3.0 Mapserver. Read more about this in chapter QGIS nan cepsep OGC. ### 14.1.2 Клиент WCS A Web Coverage Service (WCS) provides access to raster data in forms that are useful for client-side rendering, as input into scientific models, and for other clients. The WCS may be compared to the WFS and the WMS. As WMS and WFS service instances, a WCS allows clients to choose portions of a server's information holdings based on spatial constraints and other query criteria. QGIS has a native WCS provider and supports both version 1.0 and 1.1 (which are significantly different), but currently it prefers 1.0, because 1.1 has many issues (i.e., each server implements it in a different way with various particularities). The native WCS provider handles all network requests and uses all standard QGIS network settings (especially proxy). It is also possible to select cache mode ('always cache', 'prefer cache', 'prefer network', 'always network'), and the provider also supports selection of time position, if temporal domain is offered by the server. #### 14.1.3 Клиент WFS и WFS-T In QGIS, a WFS layer behaves pretty much like any other vector layer. You can identify and select features, and view the attribute table. Since QGIS 1.6, editing WFS-T is also supported. In general, adding a WFS layer is very similar to the procedure used with WMS. The difference is that there are no default servers defined, so we have to add our own. #### Добавление слоя WFS As an example, we use the DM Solutions WFS server and display a layer. The URL is: http://www2.dmsolutions.ca/cgi-bin/mswfs gmap - 1. Click on the Add WFS Layer tool on the Layers toolbar. The Add WFS Layer from a Server dialog appears. - 2. Click on [New]. - 3. Enter 'DM Solutions' as name. - 4. Enter the URL (see above). - 5. Click [OK]. - 6. Choose 'DM Solutions' from the Server Connections drop-down list. - 7. Click [Connect]. - 8. Wait for the list of layers to be populated. - 9. Select the Parks layer in the list. - 10. Click [Apply] to add the layer to the map. Note that any proxy settings you may have set in your preferences are also recognized. You'll notice the download progress is visualized in the lower left of the QGIS main window. Once the layer is loaded, you can identify and select a province or two and view the attribute table. Only WFS 1.0.0 is supported. At this time, there have not been many tests against WFS versions implemented in other WFS servers. If you encounter problems with any other WFS server, please do not hesitate to contact the development team. Please refer to section $Cnpaeka\ u\ noddep Heka\ of$ for further information about the mailing lists. #### Совет: Поиск WFS серверов Дополнительные WFS-серверы можно найти, используя Google или любую другую поисковую систему. Существует множество списков, содержащих URL WFS-серверов, некоторые из которых поддерживаются, а некоторые уже нет. Рис. 14.4: Добавление слоя WFS 🚨 # 14.2 QGIS как сервер OGC QGIS Server is an open source WMS 1.3, WFS 1.0.0 and WCS 1 1.1.1 implementation that, in addition, implements advanced cartographic features for thematic mapping. The QGIS Server is a FastCGI/CGI (Common Gateway Interface) application written in C++ that works together with a web server (e.g., Apache, Lighttpd). It is funded by the EU projects Orchestra, Sany and the city of Uster in Switzerland. QGIS Server uses QGIS as back end for the GIS logic and for map rendering. Furthermore, the Qt library is used for graphics and for platform-independent C++ programming. In contrast to other WMS software, the QGIS Server uses cartographic rules as a configuration language, both for the server configuration and for the user-defined cartographic rules. Moreover, the QGIS Server project provides the 'Publish to Web' plugin, a plugin for QGIS desktop that exports the current layers and symbology as a web project for QGIS Server (containing cartographic visualization rules expressed in SLD). As QGIS desktop and QGIS Server use the same visualization libraries, the maps that are published on the web look the same as in desktop GIS. The 'Publish to Web' plugin currently supports basic symbolization, with the option to introduce more complex cartographic visualization rules manually. As the configuration is performed with the SLD standard and its documented extensions, there is only one standardised language to learn, which greatly simplifies the complexity of creating maps for the Web. In one of the following manuals, we will provide a sample configuration to set up a QGIS Server. For now, we recommend to read one of the following URLs to get more information: - http://karlinapp.ethz.ch/qgis_wms/ - http://hub.qgis.org/projects/quantum-gis/wiki/QGIS Server Tutorial - http://linfiniti.com/2010/08/qgis-mapserver-a-wms-server-for-the-masses/ ### 14.2.1 Пример установки на Debian Squeeze At this point, we will give a short and simple sample installation how-to for Debian Squeeze. Many other OSs provide packages for QGIS Server, too. If you have to build it all from source, please refer to the URLs above. Apart from QGIS and QGIS Server, you need a web server, in our case apache2. You can install all packages with aptitude or apt-get install together with other necessary dependency packages. After installation, you should test to confirm that the web server and QGIS Server work as expected. Make sure the apache server is running with /etc/init.d/apache2 start. Open a web browser and type URL: http://localhost. If apache is up, you should see the message 'It works!'. we test the QGIS Server installation. The qgis_mapserv.fcgi is available /usr/lib/cgi-bin/qgis_mapserv.fcgi and provides a standard WMS that shows the state boundaries of Alaska. Add the WMS with the URL http://localhost/cgi-bin/qgis_mapserv.fcgi as described in Выбор WMS/WMTS-серверов. Рис. 14.5: естовый WMS с границами США из комплекта WMS сервера QGIS 🕰 # 14.2.2 Creating a WMS/WFS/WCS from a QGIS project To provide a new QGIS Server WMS, WFS or WCS, we have to create a QGIS project file with some data. Here, we use the 'Alaska' shapefile from the QGIS sample dataset. Define the colors and styles of the layers in QGIS and the project CRS, if not already defined. Then, go to the OWS Server menu of the Project \rightarrow Project Properties dialog and provide some information about the OWS in the fields under Service Capabilities. This will appear in the Рис. 14.6: Definitions for a QGIS Server WMS/WFS/WCS project (KDE) GetCapabilities response of the WMS, WFS or WCS. If you don't check Service capabilities, QGIS Server will use the information given in the wms_metadata.xml file located in the cgi-bin folder. #### WMS capabilities In the WMS capabilities section, you can define the extent advertised in the WMS GetCapabilities response by entering the minimum and maximum X and Y values in the fields under Advertised extent. Clicking Use Current Canvas Extent sets these values to the extent currently displayed in the QGIS map canvas. By checking CRS restrictions, you can restrict in which coordinate reference systems (CRS) QGIS Server will offer to render maps. Use the button below to select those CRS from the Coordinate Reference System Selector, or click Used to add the CRS used in the QGIS project to the list. If you have print composers defined in your project, they will be listed in the GetCapabilities response, and they can be used by the GetPrint request to create prints, using one of the print composer layouts as a template. This is a QGIS-specific extension to the WMS 1.3.0 specification. If you want to exclude any print composer from being published by the WMS, check Exclude composers and click the button below. Then, select a print composer from the Select print composer dialog in order to add it to the excluded composers list. If you want to exclude any layer or layer group from being published by the WMS, check ** Exclude Layers* and click the ** button below. This opens the Select restricted layers and groups dialog, which allows you to choose the layers and groups that you don't want to be published. Use the Shift or Ctrl key if you want to select multiple entries at once. You can receive requested GetFeatureInfo as plain text, XML and GML. Default is XML, text or GML format depends the output format choosen for the GetFeatureInfo request. If you wish, you can check Add geometry to feature response. This will include in the GetFeatureInfo response the geometries of the features in a text format. If you want QGIS Server to advertise specific request URLs in the WMS GetCapabilities response, enter the corresponding URL in the Advertised URL field. Furthermore, you can restrict the maximum size of the maps returned by the GetMap request by entering the maximum width and height into the respective fields under Maximums for GetMap request. ### WFS capabilities In the WFS capabilities area, you can select the layers that you want to publish as WFS, and specify if they will allow
the update, insert and delete operations. If you enter a URL in the $Advertised\ URL$ field of the WFS capabilities section, QGIS Server will advertise this specific URL in the WFS GetCapabilities response. ### WCS capabilities In the WCS capabilities area, you can select the layers that you want to publish as WCS. If you enter a URL in the $Advertised\ URL$ field of the WCS capabilities section, QGIS Server will advertise this specific URL in the WCS GetCapabilities response. Now, save the session in a project file alaska.qgs. To provide the project as a WMS/WFS, we create a new folder /usr/lib/cgi-bin/project with admin privileges and add the project file alaska.qgs and a copy of the qgis_mapserv.fcgi file - that's all. Now we test our project WMS, WFS and WCS. Add the WMS, WFS and WCS as described in Загрузка WMS/WMTS-слоёв, Клиент WFS и WFS-T and Клиент WCS to QGIS and load the data. The URL is: http://localhost/cgi-bin/project/qgis_mapserv.fcgi ### Настройка сервера OWS For vector layers, the Fields menu of the $Layer \rightarrow Properties$ dialog allows you to define for each attribute if it will be published or not. By default, all the attributes are published by your WMS and WFS. If you want a specific attribute not to be published, uncheck the corresponding checkbox in the WMS or WFS column. You can overlay watermarks over the maps produced by your WMS by adding text annotations or SVG annotations to the project file. See section Annotation Tools in Ocnobuse uncomputement for instructions on creating annotations. For annotations to be displayed as watermarks on the WMS output, the Fixed map position check box in the Annotation text dialog must be unchecked. This can be accessed by double clicking the annotation while one of the annotation tools is active. For SVG annotations, you will need either to set the project to save absolute paths (in the General menu of the $Project \rightarrow Project$ Properties dialog) or to manually modify the path to the SVG image in a way that it represents a valid relative path. #### Extra parameters supported by the WMS GetMap request In the WMS GetMap request, QGIS Server accepts a couple of extra parameters in addition to the standard parameters according to the OCG WMS 1.3.0 specification: • MAP parameter: Similar to MapServer, the MAP parameter can be used to specify the path to the QGIS project file. You can specify an absolute path or a path relative to the location of the server executable (qgis_mapserv.fcgi). If not specified, QGIS Server searches for .qgs files in the directory where the server executable is located. Пример: ``` http://localhost/cgi-bin/qgis_mapserv.fcgi?\ REQUEST=GetMap&MAP=/home/qgis/mymap.qgs&... ``` • DPI parameter: The DPI parameter can be used to specify the requested output resolution. Пример: ``` http://localhost/cgi-bin/qgis_mapserv.fcgi?REQUEST=GetMap&DPI=300&... ``` • **OPACITIES** parameter: Opacity can be set on layer or group level. Allowed values range from 0 (fully transparent) to 255 (fully opaque). Пример: ``` http://localhost/cgi-bin/qgis_mapserv.fcgi?\ REQUEST=GetMap&LAYERS=mylayer1,mylayer2&OPACITIES=125,200&... ``` # Работа с данными GPS . # 15.1 Модуль GPS ### 15.1.1 Что такое GPS? GPS, the Global Positioning System, is a satellite-based system that allows anyone with a GPS receiver to find their exact position anywhere in the world. GPS is used as an aid in navigation, for example in airplanes, in boats and by hikers. The GPS receiver uses the signals from the satellites to calculate its latitude, longitude and (sometimes) elevation. Most receivers also have the capability to store locations (known as **waypoints**), sequences of locations that make up a planned **route** and a tracklog or **track** of the receiver's movement over time. Waypoints, routes and tracks are the three basic feature types in GPS data. QGIS displays waypoints in point layers, while routes and tracks are displayed in linestring layers. ### 15.1.2 Загрузка GPS данных из файла Существуют десятки различных форматов файлов для хранения GPS данных. Формат, используемый в QGIS, называется GPX (формат обмена данными GPS), являющийся стандартным обменным форматом, который может содержать любое количество маршрутных точек, маршрутов и треков в одном файле. To load a GPX file, you first need to load the plugin. $Plugins \rightarrow Plugin Manager...$ opens the Plugin Manager Dialog. Activate the GPS Tools checkbox. When this plugin is loaded, two buttons with a small handheld GPS device will show up in the toolbar: - Create new GPX Layer - GPS Tools For working with GPS data, we provide an example GPX file available in the QGIS sample dataset: qgis_sample_data/gps/national_monuments.gpx. See section Π pumepu dannux for more information about the sample data. - 1. Select $Vector \to GPS \to GPS$ Tools or click the GPS Tools icon in the toolbar and open the Load GPX file tab (see figure GPS_1). - 2. Используйте кнопку [Обзор...] для перехода в каталог qgis_sample_data/gps/, выберите файл GPX national_monuments.gpx и нажмите кнопку [Открыть]. Следует использовать кнопку [Обзор...] для того, чтобы выбрать файл GPX, затем установить флаги для выбора типов объектов, которые нужно загрузить из этого файла. Каждый Рис. 15.1: Диалоговое окно «Инструменты GPS» 🗘 тип объектов будет загружен в отдельный слой, как только вы нажмете кнопку [OK]. Файл national_monuments.gpx включает лишь маршрутные точки. Примечание: GPS units allow you to store data in different coordinate systems. When downloading a GPX file (from your GPS unit or a web site) and then loading it in QGIS, be sure that the data stored in the GPX file uses WGS 84 (latitude/longitude). QGIS expects this, and it is the official GPX specification. See http://www.topografix.com/GPX/1/1/. ### 15.1.3 Программа GPSBabel Since QGIS uses GPX files, you need a way to convert other GPS file formats to GPX. This can be done for many formats using the free program GPSBabel, which is available at http://www.gpsbabel.org. This program can also transfer GPS data between your computer and a GPS device. QGIS uses GPSBabel to do these things, so it is recommended that you install it. However, if you just want to load GPS data from GPX files you will not need it. Version 1.2.3 of GPSBabel is known to work with QGIS, but you should be able to use later versions without any problems. #### 15.1.4 Импортирование данных GPS To import GPS data from a file that is not a GPX file, you use the tool *Import other file* in the GPS Tools dialog. Here, you select the file that you want to import (and the file type), which feature type you want to import from it, where you want to store the converted GPX file and what the name of the new layer should be. Note that not all GPS data formats will support all three feature types, so for many formats you will only be able to choose between one or two types. ### 15.1.5 Загрузка данных GPS из устройства QGIS can use GPSBabel to download data from a GPS device directly as new vector layers. For this we use the *Download from GPS* tab of the GPS Tools dialog (see Figure_GPS_2). Here, we select the type of GPS device, the port that it is connected to (or USB if your GPS supports this), the feature type that you want to download, the GPX file where the data should be stored, and the name of the new layer. The device type you select in the GPS device menu determines how GPSBabel tries to communicate with your GPS device. If none of the available types work with your GPS device, you can create a new type (see section Onpedenenue nosux munos ycmpoŭcms). The port may be a file name or some other name that your operating system uses as a reference to the physical port in your computer that the GPS device is connected to. It may also be simply USB, for USB-enabled GPS units. Рис. 15.2: Инструмент загрузки - Don Linux, this is something like /dev/ttyS0 or /dev/ttyS1. - 8 On Windows, it is COM1 or COM2. When you click [OK], the data will be downloaded from the device and appear as a layer in QGIS. ### 15.1.6 Выгрузка данных GPS в устройство You can also upload data directly from a vector layer in QGIS to a GPS device using the *Upload to GPS* tab of the GPS Tools dialog. To do this, you simply select the layer that you want to upload (which must be a GPX layer), your GPS device type, and the port (or USB) that it is connected to. Just as with the download tool, you can specify new device types if your device isn't in the list. This tool is very useful in combination with the vector-editing capabilities of QGIS. It allows you to load a map, create waypoints and routes, and then upload them and use them on your GPS device. ### 15.1.7 Определение новых типов устройств There are lots of different types of GPS devices. The QGIS developers can't test all of them, so if you have one that does not work with any of the device types listed in the *Download from GPS* and *Upload to GPS* tools, you can define your own device type for it. You do this by using the GPS device editor, which you start by clicking the [Edit devices] button in the download or the upload tab. To define a new device, you simply click the [New device] button, enter a name, enter download and upload commands for your device, and click the [Update device] button. The name will be listed in the device menus in the upload and download windows – it can be any string. The download command is the command that is used to download data from the device to a GPX file. This will probably be a GPSBabel command, but you can use any other command line program that can create a GPX file. QGIS will replace the keywords "type, "in, and "out when it runs the command. **%type** will be replaced by -w if you are downloading waypoints, -r if you are downloading routes and -t if you are downloading tracks. These are command-line options that tell GPSBabel which feature type to download. %in will be replaced by
the port name that you choose in the download window and %out will be replaced by the name you choose for the GPX file that the downloaded data should be stored in. So, if you create a device type with the download command gpsbabel %type -i garmin -o gpx %in %out (this is actually the download command for the predefined device type 'Garmin serial') and then use it to download waypoints from port /dev/ttySO to the file output.gpx, QGIS will replace the keywords and run the command gpsbabel -w -i garmin -o gpx /dev/ttySO output.gpx. 15.1. Модуль GPS 159 Команда выгрузки — это команда, применяемая для выгрузки данных в устройство. В ней используются те же ключевые слова, однако %in уже заменяется на название файла GPX для выгруженного слоя, а %out — на название порта. You can learn more about GPSBabel and its available command line options at http://www.gpsbabel.org. Once you have created a new device type, it will appear in the device lists for the download and upload tools. ### 15.1.8 Download of points/tracks from GPS units As described in previous sections QGIS uses GPSBabel to download points/tracks directly in the project. QGIS comes out of the box with a pre-defined profile to download from Garmin devices. Unfortunately there is a bug that does not allow create other profiles, so downloading directly in QGIS using the GPS Tools is at the moment limited to Garmin USB units. #### Garmin GPSMAP 60cs #### MS Windows Install the Garmin USB drivers from http://www8.garmin.com/support/download_details.jsp?id=591 Connect the unit. Open GPS Tools and use type=garmin serial and port=usb: Fill the fields *Layer name* and *Output file*. Sometimes it seems to have problems saving in a certain folder, using something like c:\temp usually works. ### Ubuntu/Mint GNU/Linux It is first needed an issue about the permissions of the device, as described at https://wiki.openstreetmap.org/wiki/USB_Garmin_on_GNU/Linux. You can try to create a file /etc/udev/rules.d/51-garmin.rules containing this rule ATTRS{idVendor}=="091e", ATTRS{idProduct}=="0003", MODE="666" After that is necessary to be sure that the garmin_gps kernel module is not loaded rmmod garmin_gps and then you can use the GPS Tools. Unfortunately there seems to be a bug and usually QGIS freezes several times before the operation work fine. ### BTGP-38KM datalogger (only Bluetooth) #### MS Windows The already referred bug does not allow to download the data from within QGIS, so it is needed to use GPSBabel from the command line or using its interface. The working command is gpsbabel -t -i skytraq,baud=9600,initbaud=9600 -f COM9 -o gpx -F C:/GPX/aaa.gpx #### Ubuntu/Mint GNU/Linux Use same command (or settings if you use GPSBabel GUI) as in Windows. On Linux it maybe somehow common to get a message like skytraq: Too many read errors on serial port it is just a matter to turn off and on the datalogger and try again. #### BlueMax GPS-4044 datalogger (both BT and USB) #### MS Windows **Примечание:** It needs to install its drivers before using it on Windows 7. See in the manufacturer site for the proper download. Downloading with GPSBabel, both with USB and BT returns always an error like ``` gpsbabel -t -i mtk -f COM12 -o gpx -F C:/temp/test.gpx mtk_logger: Can't create temporary file data.bin Error running gpsbabel: Process exited unsucessfully with code 1 ``` ### Ubuntu/Mint GNU/Linux #### With USB After having connected the cable use the dmesg command to understand what port is being used, for example /dev/ttyACM3. Then as usual use GPSBabel from the CLI or GUI ``` gpsbabel -t -i mtk -f /dev/ttyACM3 -o gpx -F /home/user/bluemax.gpx ``` #### With Bluetooth Use Blueman Device Manager to pair the device and make it available through a system port, then run GPSBabel ``` gpsbabel -t -i mtk -f /dev/rfcomm0 -o gpx -F /home/user/bluemax_bt.gpx ``` # 15.2 GPS-слежение There are four possible screens in this GPS tracking window: - III GPS signal strength of satellite connections - GPS polar screen showing number and polar position of satellites - \$\simeq \text{GPS options screen (see figure gps options)} With a plugged-in GPS receiver (has to be supported by your operating system), a simple click on **[Connect]** connects the GPS to QGIS. A second click (now on **[Disconnect]**) disconnects the GPS receiver from your computer. For GNU/Linux, gpsd support is integrated to support connection to most GPS receivers. Therefore, you first have to configure gpsd properly to connect QGIS to it. Предупреждение: If you want to record your position to the canvas, you have to create a new vector layer first and switch it to editable status to be able to record your track. ### 15.2.1 Координаты текущего местоположения If the GPS is receiving signals from satellites, you will see your position in latitude, longitude and altitude together with additional attributes. 15.2. GPS-слежение 161 Рис. 15.3: Координаты текущего местоположения и другие данные 🚨 ### 15.2.2 Мощность сигнала GPS Here, you can see the signal strength of the satellites you are receiving signals from. Рис. 15.4: Мощность сигнала GPS 🚨 # 15.2.3 Положение спутников GPS Если вы хотите знать, где на небесной сфере располагаются все присоединенные спутники, переключитесь на окно Положение спутников. Также здесь можно увидеть идентификационные номера (ID) спутников, с которых вы получаете сигнал. ### 15.2.4 Параметры GPS No case of connection problems, you can switch between: Рис. 15.5: Положение спутников GPS 🔕 - 🖭 Автоопределение - С Встроенный приёмник - Серийный порт - Qpsd (selecting the Host, Port and Device your GPS is connected to) Нажатие кнопки [Подключиться] снова инициирует соединение с GPS-приемником. You can activate Automatically save added features when you are in editing mode. Or you can activate Automatically add points to the map canvas with a certain width and color. Activating Cursor, you can use a slider to shrink and grow the position cursor on the canvas. Activating Map centering allows you to decide in which way the canvas will be updated. This includes 'always', 'when leaving', if your recorded coordinates start to move out of the canvas, or 'never', to keep map extent. Finally, you can activate Log file and define a path and a file where log messages about the GPS tracking are logged. If you want to set a feature manually, you have to go back to Position and click on [Add Point] or [Add track point]. ## 15.2.5 Connect to a Bluetooth GPS for live tracking With QGIS you can connect a Bluetooth GPS for field data collection. To perform this task you need a GPS Bluetooth device and a Bluetooth receiver on your computer. At first you must let your GPS device be recognized and paired to the computer. Turn on the GPS, go to the Bluetooth icon on your notification area and search for a New Device. On the right side of the Device selection mask make sure that all devices are selected so your GPS unit will probably appear among those available. In the next step a serial connection service should be available, select it and click on [Configure] button. Remember the number of the COM port assigned to the GPS connection as resulting by the Bluetooth properties. After the GPS has been recognized, make the pairing for the connection. Usually the autorization code is 0000. 15.2. GPS-слежение 163 Рис. 15.6: Настройки GPS-слежения 🗘 Now open :guilabel: 'GPS information panel and switch to GPS options screen. Select the COM port assigned to the GPS connection and click the [Connect]. After a while a cursor indicating your position should appear. If QGIS can't receive GPS data, then you should restart your GPS device, wait 5-10 seconds then try to connect again. Usually this solution work. If you receive again a connection error make sure you don't have another Bluetooth receiver near you, paired with the same GPS unit. ### 15.2.6 Using GPSMAP 60cs #### **MS Windows** Easiest way to make it work is to use a middleware (freeware, not open) called GPSGate. Launch the program, make it scan for GPS devices (works for both USB and BT ones) and then in QGIS just click [Connect] in the Live tracking panel using the Autodetect mode. ### Ubuntu/Mint GNU/Linux As for Windows the easiest way is to use a server in the middle, in this case GPSD, so ``` sudo apt-get install gpsd ``` Then load the garmin_gps kernel module ``` sudo modprobe garmin_gps ``` And then connect the unit. Then check with <code>dmesg</code> the actual device being used bu the unit, for example <code>/dev/ttyUSBO</code>. Now you can launch <code>gpsd</code> ``` gpsd /dev/ttyUSB0 ``` And finally connect with the QGIS live tracking tool. ### 15.2.7 Using BTGP-38KM datalogger (only Bluetooth) Using GPSD (under Linux) or GPSGate (under Windows) is effortless. ### 15.2.8 Using BlueMax GPS-4044 datalogger (both BT and USB) ### **MS Windows** The live tracking works for both USB and BT modes, by using GPSGate or even without it, just use the Autodetect mode, or point the tool the right port. #### Ubuntu/Mint GNU/Linux #### For USB The live tracking works both with GPSD ``` {\tt gpsd\ /dev/ttyACM3} ``` or without it, by connecting the QGIS live tracking tool directly to the device (for example /dev/ttyACM3). #### For Bluetooth 15.2. GPS-слежение 165 The live tracking works both with GPSD gpsd /dev/rfcomm0 or without it, by connecting the QGIS live tracking tool directly to the device (for example $\mbox{/dev/rfcomm0}$). # Интеграция с GRASS GIS The GRASS plugin provides access to GRASS GIS databases and functionalities (see GRASS-PROJECT in π umepamypa u ccuaru ha web-pecypcu). This includes visualizing GRASS raster and vector layers, digitizing vector layers, editing vector attributes, creating new vector layers and analysing GRASS 2-D and 3-D data with more than 400 GRASS modules. In this section, we'll introduce the plugin functionalities and give some examples of managing
and working with GRASS data. The following main features are provided with the toolbar menu when you start the GRASS plugin, as described in section sec_starting_grass: - Открыть набор - Ш Новый набор - Закрыть набор - Добавить векторный слой GRASS - Добавить растровый слой GRASS - Создать новый векторный слой GRASS - Редактировать векторный слой GRASS - M Открыть инструменты GRASS - Показать текущий регион GRASS - Изменить текущий регион GRASS # 16.1 Запуск расширения GRASS To use GRASS functionalities and/or visualize GRASS vector and raster layers in QGIS, you must select and load the GRASS plugin with the Plugin Manager. Therefore, go to the menu $Plugins \rightarrow Manage$ Plugins, select GRASS and click OK. You can now start loading raster and vector layers from an existing GRASS LOCATION (see section sec_load_grassdata). Or, you can create a new GRASS LOCATION with QGIS (see section Cosdanue nosoũ obnacmu GRASS) and import some raster and vector data (see section Mmnopm danhux s obnacmu GRASS) for further analysis with the GRASS Toolbox (see section The GRASS Toolbox). # 16.2 Загрузка растровых и векторных слоёв GRASS With the GRASS plugin, you can load vector or raster layers using the appropriate button on the toolbar menu. As an example, we will use the QGIS Alaska dataset (see section $\Pi pumepu \ dannux$). It includes a small sample GRASS LOCATION with three vector layers and one raster elevation map. - 1. Create a new folder called grassdata, download the QGIS 'Alaska' dataset qgis_sample_data.zip from http://download.osgeo.org/qgis/data/ and unzip the file into grassdata. - 2. Start QGIS. - 5. For Gisdbase, browse and select or enter the path to the newly created folder grassdata. - 6. Теперь в выпадающем списке *Район* должен появиться пункт alaska, а в списке *Набор* пункт demo. - 7. Нажмите [OK]. Обратите внимание, что некоторые ранее недоступные инструменты на панели GRASS теперь доступны. - 9. Click on Add GRASS vector layer, choose the map name alaska and click [OK]. The Alaska boundary vector layer will be overlayed on top of the gtopo30 map. You can now adapt the layer properties as described in chapter Cooucmea bermophozo chos (e.g., change opacity, fill and outline color). - 10. Also load the other two vector layers, rivers and airports, and adapt their properties. As you see, it is very simple to load GRASS raster and vector layers in QGIS. See the following sections for editing GRASS data and creating a new LOCATION. More sample GRASS LOCATIONs are available at the GRASS website at http://grass.osgeo.org/download/sample-data/. ### Cobet: Подключение данных GRASS If you have problems loading data or QGIS terminates abnormally, check to make sure you have loaded the GRASS plugin properly as described in section sec starting grass. # 16.3 Область и набор GRASS GRASS data are stored in a directory referred to as GISDBASE. This directory, often called grassdata, must be created before you start working with the GRASS plugin in QGIS. Within this directory, the GRASS GIS data are organized by projects stored in subdirectories called LOCATIONs. Each LOCATION is defined by its coordinate system, map projection and geographical boundaries. Each LOCATION can have several MAPSETs (subdirectories of the LOCATION) that are used to subdivide the project into different topics or subregions, or as workspaces for individual team members (see Neteler & Mitasova 2008 in **Jumepamypa u cciinku ha web-pecypcii*). In order to analyze vector and raster layers with GRASS modules, you must import them into a GRASS LOCATION. (This is not strictly true — with the GRASS modules r.external and v.external you can create read-only links to external GDAL/OGR-supported datasets without importing them. But because this is not the usual way for beginners to work with GRASS, this functionality will not be described here.) Рис. 16.1: Данные GRASS в районе «alaska» ### 16.3.1 Создание новой области GRASS As an example, here is how the sample GRASS LOCATION alaska, which is projected in Albers Equal Area projection with unit feet was created for the QGIS sample dataset. This sample GRASS LOCATION alaska will be used for all examples and exercises in the following GRASS-related sections. It is useful to download and install the dataset on your computer (see *Примеры данных*). - 1. Start QGIS and make sure the GRASS plugin is loaded. - 2. Visualize the alaska.shp shapefile (see section vector_load_shapefile) from the QGIS Alaska dataset (see Примеры данных). - 3. На панели GRASS нажмите кнопку ^{Новый набор} для появления диалога с выбором набора. - 4. Select an existing GRASS database (GISDBASE) folder grassdata, or create one for the new LOCATION using a file manager on your computer. Then click [Next]. - 5. Можно использовать этот диалог для создания нового набора в существующей области (см. раздел Добавление нового набора) или для создания новой области. Выберите пункт Осоздать новый район (см. figure grass location 2). - 6. Enter a name for the LOCATION we used 'alaska' and click [Next]. - 7. Определите проекцию, выбрав пункт Проекция и включив список проекций. - 8. We are using Albers Equal Area Alaska (feet) projection. Since we happen to know that it is represented by the EPSG ID 2964, we enter it in the search box. (Note: If you want to repeat this process for another LOCATION and projection and haven't memorized the EPSG ID, click on the CRS Status icon in the lower right-hand corner of the status bar (see section Paboma c npoekuusmu)). - 9. In Filter, insert 2964 to select the projection. - 10. Нажмите кнопку [**Next**]. - 11. To define the default region, we have to enter the LOCATION bounds in the north, south, east, and west directions. Here, we simply click on the button [Set current |qg| extent], to apply the extent of the loaded layer alaska.shp as the GRASS default region extent. - 12. Нажмите кнопку [**Next**]. - 13. We also need to define a MAPSET within our new LOCATION (this is necessary when creating a new LOCATION). You can name it whatever you like we used 'demo'. GRASS automatically creates a special MAPSET called PERMANENT, designed to store the core data for the project, its default spatial extent and coordinate system definitions (see Neteler & Mitasova 2008 in Литература и ссылки на web-pecypcы). - 14. Проверьте общий вывод, чтобы быть уверенным в корректности введенного, и нажмите [Finish]. - 15. The new LOCATION, 'alaska', and two MAPSETS, 'demo' and 'PERMANENT', are created. The currently opened working set is 'demo', as you defined. - 16. Обратите внимание, что некоторые из инструментов на панели GRASS, которые раньше были отключены, теперь доступны. Рис. 16.2: Создание новой области GRASS или нового набора в QGIS If that seemed like a lot of steps, it's really not all that bad and a very quick way to create a LOCATION. The LOCATION 'alaska' is now ready for data import (see section Mmnopm dahhbux e obsacms GRASS). You can also use the already-existing vector and raster data in the sample GRASS LOCATION 'alaska', included in the QGIS 'Alaska' dataset $\Pi pumepu$ dahhbux, and move on to section Modens eekmophbux dahhbux GRASS. ### 16.3.2 Добавление нового набора A user has write access only to a GRASS MAPSET he or she created. This means that besides access to your own MAPSET, you can read maps in other users' MAPSETs (and they can read yours), but you can modify or remove only the maps in your own MAPSET. All MAPSETs include a WIND file that stores the current boundary coordinate values and the currently selected raster resolution (see Neteler & Mitasova 2008 in Литература и ссылки на web-ресурсы, and section Инструмент работы с регионом GRASS). - 1. Start QGIS and make sure the GRASS plugin is loaded. - 2. На панели GRASS нажмите кнопку Штовый набор для появления диалога с выбором набора. - 3. Select the GRASS database (GISDBASE) folder grassdata with the LOCATION 'alaska', where we want to add a further MAPSET called 'test'. - 4. Нажмите кнопку [Next]. - 5. Мы можем использовать этот диалог для создания нового **набора** в существующей **области** или для создания новой **области**. Выберите пункт Выбрать район (см. figure grass location 2) и нажмите кнопку [Next]. - 6. Enter the name text for the new MAPSET. Below in the wizard, you see a list of existing MAPSETs and corresponding owners. 7. Нажмите кнопку [Next], проверьте общий вывод, чтобы быть уверенными в корректности введенного, и нажмите кнопку [Finish]. # 16.4 Импорт данных в область GRASS This section gives an example of how to import raster and vector data into the 'alaska' GRASS LOCATION provided by the QGIS 'Alaska' dataset. Therefore, we use the landcover raster map landcover.img and the vector GML file lakes.gml from the QGIS 'Alaska' dataset (see Π pumepu dannux). - 1. Start QGIS and make sure the GRASS plugin is loaded. - 2. На панели GRASS нажмите кнопку 🕮 Открыть набор для появления диалога с выбором набора. - 3. Select as GRASS database the folder $\tt grassdata$ in the QGIS Alaska dataset, as LOCATION 'alaska', as MAPSET 'demo' and click $\tt [OK]$. - 4. Теперь нажмите кнопку \mathcal{M} Открыть инструменты GRASS. Появится окно инструментов GRASS (см. раздел *The GRASS Toolbox*). - 5. To import the raster map landcover.img, click the module r.in.gdal in the *Modules Tree* tab. This GRASS module allows you to import GDAL-supported raster files into a GRASS LOCATION. The module dialog for r.in.gdal appears. - 6. Browse to the folder raster in the QGIS 'Alaska' dataset and select the file landcover.img. - 7. As raster output name, define landcover_grass and click [Run]. In the *Output* tab, you see the currently running GRASS command r.in.gdal -o input=/path/to/landcover.img output=landcover_grass. - 8. When it says Succesfully finished, click [View output]. The landcover_grass raster layer is now imported into GRASS and will be visualized in the QGIS canvas. - 9. To import the vector GML file lakes.gml, click
the module v.in.ogr in the *Modules Tree* tab. This GRASS module allows you to import OGR-supported vector files into a GRASS LOCATION. The module dialog for v.in.ogr appears. - 10. Browse to the folder gml in the QGIS 'Alaska' dataset and select the file lakes.gml as OGR file. - 11. As vector output name, define lakes_grass and click [Run]. You don't have to care about the other options in this example. In the *Output* tab you see the currently running GRASS command v.in.ogr -o dsn=/path/to/lakes.gml output=lakes_grass. - 12. When it says **Succesfully finished**, click [View output]. The lakes_grass vector layer is now imported into GRASS and will be visualized in the QGIS canvas. # 16.5 Модель векторных данных GRASS Важно понять модель векторных данных GRASS до начала процесса оцифровки. В общем виде, GRASS использует топологическую векторную модель. Это означает, что площадные объекты представлены не замкнутыми полигонами, а одной или более границами. Граница между двумя смежными полигонами оцифровывается только один раз и является общей для обоих полигонов. Границы должны быть соединены без разрывов. Полигон определяется с помощью **центроида** внутри полигона. Besides boundaries and centroids, a vector map can also contain points and lines. All these geometry elements can be mixed in one vector and will be represented in different so-called 'layers' inside one GRASS vector map. So in GRASS, a layer is not a vector or raster map but a level inside a vector layer. This is important to distinguish carefully. (Although it is possible to mix geometry elements, it is unusual and, even in GRASS, only used in special cases such as vector network analysis. Normally, you should prefer to store different geometry elements in different layers.) It is possible to store several 'layers' in one vector dataset. For example, fields, forests and lakes can be stored in one vector. An adjacent forest and lake can share the same boundary, but they have separate attribute tables. It is also possible to attach attributes to boundaries. An example might be the case where the boundary between a lake and a forest is a road, so it can have a different attribute table. The 'layer' of the feature is defined by the 'layer' inside GRASS. 'Layer' is the number which defines if there is more than one layer inside the dataset (e.g., if the geometry is forest or lake). For now, it can be only a number. In the future, GRASS will also support names as fields in the user interface. Attributes can be stored inside the GRASS LOCATION as dBase or SQLite3 or in external database tables, for example, PostgreSQL, MySQL, Oracle, etc. Атрибуты в таблицах баз данных соотносятся с геометрическими элементами с помощью значения «категорий». «Категории» (ключ, ID) — это целые числа, присоединенные к геометрическим элементам, они используются как ссылка на ключевую колонку в базе данных. ### Cobet: Изучение модели векторных данных GRASS Лучший способ изучить модель векторных данных GRASS и её возможности — скачать одно из пособий по GRASS, где модель векторных данных описана более подробно. Смотрите http://grass.osgeo.org/gdp/manuals.php для более подробной информации, книг и пособий на нескольких языках. # 16.6 Создание нового векторного слоя GRASS To create a new GRASS vector layer with the GRASS plugin, click the Create new GRASS vector toolbar icon. Enter a name in the text box, and you can start digitizing point, line or polygon geometries following the procedure described in section Ουμφροβκα υ πραβκα βεκπορημία αποθέβ GRASS. In GRASS, it is possible to organize all sorts of geometry types (point, line and area) in one layer, because GRASS uses a topological vector model, so you don't need to select the geometry type when creating a new GRASS vector. This is different from shapefile creation with QGIS, because shapefiles use the Simple Feature vector model (see section Cosdanue nosoro sermopnozo caoa). #### Совет: Создание таблицы атрибутов для нового векторного слоя GRASS Если вы хотите назначить атрибуты оцифрованным геометрическим объектам, убедитесь, что до начала оцифровки была создана таблица атрибутов с полями (см. рисунок figure grass digitizing 5). # 16.7 Оцифровка и правка векторных слоёв GRASS Средства оцифровки векторных слоёв GRASS доступны через кнопку Редактировать векторный слой GRASS на панели. Убедитесь, что векторный слой подгружен и он является выбранным слоем в легенде до того, как использовать инструменты правки. Рисунок figure_grass_digitizing_2 показывает диалог правки слоя GRASS, появляющийся при нажатии на кнопку редактирования. Инструменты и настройки обсуждаются в следующих разделах. ### Совет: Оцифровка полигонов в GRASS If you want to create a polygon in GRASS, you first digitize the boundary of the polygon, setting the mode to 'No category'. Then you add a centroid (label point) into the closed boundary, setting the mode to 'Next not used'. The reason for this is that a topological vector model links the attribute information of a polygon always to the centroid and not to the boundary. ### Панель инструментов In figure_grass_digitizing_1, you see the GRASS digitizing toolbar icons provided by the GRASS plugin. Table table grass digitizing 1 explains the available functionalities. Рис. 16.3: Панель инструментов оцифровки GRASS | Икон- | Инструмент | Назначение | |------------|------------------------|--| | ка | | | | • 🔯 | Новая точка | Оцифровать новую точку | | | Новая линия | Оцифровать новую линию (завершается выбором нового инструмента) | | | Новая
граница | Оцифровать новую границу (завершается выбором нового инструмента) | | ⊕ | Новый
центроид | Оцифровать новый центроид (дать метку существующему полигону) | | ₹ | Переместить
вершину | Переместить одну вершину имеющейся линии или границы и
определить новое положение | | ₹ | Добавить
вершину | Добавить новую вершину к существующей линии | | / □ | Удалить
вершину | Удалить вершину из существующей линии (подтвердить выбор
вершины ещё одним нажатием) | | | Переместить
элемент | Переместить выбранную границу, линию, точку или центроид на новую позицию и кликнуть в месте нового положения | | /- | Разбить
линию | Split an existing line into two parts | | | Удалить
элемент | Удалить существующую границу, линию, точку или центроид
(подтвердить выбор элемента ещё одним нажатием) | | | Изменить
атрибуты | Изменить атрибуты выбранного элемента (заметьте, что один элемент может представлять много объектов, см. выше) | | Ф | Закрыть | Завершить сессию и сохранить текущий статус (с последующей перестройкой топологии) | Table GRASS Digitizing 1: Средства оцифровки GRASS #### Вкладка «Категории» ${\it B}$ кладка ${\it Kameropuu}$ позволяет определить способ присваивания значений категорий новым геометрическим элементам. - Mode: The category value that will be applied to new geometry elements. - Next not used Apply next not yet used category value to geometry element. - Manual entry Manually define the category value for the geometry element in the 'Category' entry field. - No category Do not apply a category value to the geometry element. This is used, for instance, for area boundaries, because the category values are connected via the centroid. Рис. 16.4: Вкладка Категории в панели оцифровки GRASS - Category The number (ID) that is attached to each digitized geometry element. It is used to connect each geometry element with its attributes. - Field (layer) Each geometry element can be connected with several attribute tables using different GRASS geometry layers. The default layer number is 1. #### Cobet: Creating an additional GRASS 'layer' with |qg| If you would like to add more layers to your dataset, just add a new number in the 'Field (layer)' entry box and press return. In the Table tab, you can create your new table connected to your new layer. #### Вкладка «Параметры» Вкладка *Параметры* позволяет задавать прилипание в пикселах экрана. Порог прилипания определяется тем, на каком расстоянии новые точки или конечные узлы линий должны быть «притянуты» к существующим узлам. Это помогает избегать разрывов и висячих узлов между границами. По умолчанию задан порог в 10 пикселов. Рис. 16.5: Вкладка «Параметры» в панели оцифровки GRASS #### Вкладка «Символика» The *Symbology* tab allows you to view and set symbology and color settings for various geometry types and their topological status (e.g., closed / opened boundary). #### Вкладка «Таблица» The *Table* tab provides information about the database table for a given 'layer'. Here, you can add new columns to an existing attribute table, or create a new database table for a new GRASS vector layer Рис. 16.6: GRASS Digitizing Symbology Tab (see section Cosdanue нового векторного слоя GRASS). Рис. 16.7: Вкладка «Таблица» в панели оцифровки GRASS ### Совет: Права редактирования GRASS You must be the owner of the GRASS MAPSET you want to edit. It is impossible to edit data layers in a MAPSET that is not yours, even if you have write permission. # 16.8 Инструмент работы с регионом GRASS The region definition (setting a spatial working window) in GRASS is important for working with raster layers. Vector analysis is by default not limited to any defined region definitions. But all newly created rasters will have the spatial extension and resolution of the currently defined GRASS region, regardless of their original extension and resolution. The current GRASS region is stored in the \$LOCATION/\$MAPSET/WIND file, and it defines north, south, east and west bounds, number of columns and rows, horizontal and vertical spatial resolution. It is possible to switch on and off the visualization of the GRASS region in the QGIS canvas using the Display current GRASS region button. With the Edit current GRASS region icon, you
can open a dialog to change the current region and the symbology of the GRASS region rectangle in the QGIS canvas. Type in the new region bounds and resolution, and click [OK]. The dialog also allows you to select a new region interactively with your mouse on the QGIS canvas. Therefore, click with the left mouse button in the QGIS canvas, open a rectangle, close it using the left mouse button again and click [OK]. The GRASS module g.region provides a lot more parameters to define an appropriate region extent and resolution for your raster analysis. You can use these parameters with the GRASS Toolbox, described in section The GRASS Toolbox. # 16.9 The GRASS Toolbox The Mopen GRASS Tools box provides GRASS module functionalities to work with data inside a selected GRASS LOCATION and MAPSET. To use the GRASS Toolbox you need to open a LOCATION and MAPSET that you have write permission for (usually granted, if you created the MAPSET). This is necessary, because new raster or vector layers created during analysis need to be written to the currently selected LOCATION and MAPSET. Рис. 16.8: Инструменты GRASS и дерево модулей 🚨 ### 16.9.1 Работа с модулями GRASS The GRASS shell inside the GRASS Toolbox provides access to almost all (more than 300) GRASS modules in a command line interface. To offer a more user-friendly working environment, about 200 of the available GRASS modules and functionalities are also provided by graphical dialogs within the GRASS plugin Toolbox. A complete list of GRASS modules available in the graphical Toolbox in QGIS version 2.2 is available in the GRASS wiki at http://grass.osgeo.org/wiki/GRASS-QGIS relevant module list. It is also possible to customize the GRASS Toolbox content. This procedure is described in section Настройка инструментов GRASS. As shown in figure grass toolbox 1, you can look for the appropriate GRASS module using the thematically grouped *Modules Tree* or the searchable *Modules List* tab. By clicking on a graphical module icon, a new tab will be added to the Toolbox dialog, providing three new sub-tabs: Options, Output and Manual. #### Параметры The *Options* tab provides a simplified module dialog where you can usually select a raster or vector layer visualized in the QGIS canvas and enter further module-specific parameters to run the module. Рис. 16.9: Модули GRASS, вкладка «Параметры» 🚨 The provided module parameters are often not complete to keep the dialog clear. If you want to use further module parameters and flags, you need to start the GRASS shell and run the module in the command line. A new feature since QGIS 1.8 is the support for a *Show Advanced Options* button below the simplified module dialog in the *Options* tab. At the moment, it is only added to the module v.in.ascii as an example of use, but it will probably be part of more or all modules in the GRASS Toolbox in future versions of QGIS. This allows you to use the complete GRASS module options without the need to switch to the GRASS shell. #### Вывод Вкладка *Вывод* предоставляет информацию о статусе вывода модуля. Когда вы нажимаете кнопку [Запустить], модуль переключается во вкладку *Вывод* и вы можете видеть информацию о процессе анализа. Если все закончилось успешно, в конце вы увидите сообщение Завершено успешно. #### Справка The Manual tab shows the HTML help page of the GRASS module. You can use it to check further module parameters and flags or to get a deeper knowledge about the purpose of the module. At the end of each module manual page, you see further links to the Main Help index, the Thematic index and the Full index. These links provide the same information as the module g.manual. ## Совет: Показать результат сразу Если вы хотите отобразить результаты выших вычислений сразу же в окне карты, используйте кнопку [Показать вывод] внизу вкладки модуля. Рис. 16.10: Модули GRASS, вкладка «Вывод» 🗘 Рис. 16.11: Модули GRASS, вкладка «Справка» 🚨 ### 16.9.2 Примеры модулей GRASS Следующие примеры продемонстрируют применение некоторых из модулей GRASS. #### Создание изолиний The first example creates a vector contour map from an elevation raster (DEM). Here, it is assumed that you have the Alaska LOCATION set up as explained in section M_{MNOPM} dahhbux e observed GRASS. - First, open the location by clicking the location by clicking the Alaska location. - Теперь откройте карту рельефа gtopo30, нажав кнопку Добавить растровый слой GRASS и выбрав растр gtopo30 из набора demo. - Теперь откройте панель инструментов с помощью кнопки 🧖 Открыть инструменты GRASS. - In the list of tool categories, double-click $Raster \rightarrow Surface\ Management \rightarrow Generate\ vector\ contour\ lines.$ - Now a single click on the tool **r.contour** will open the tool dialog as explained above (see *Pa6oma* с модулями *GRASS*). The gtopo30 raster should appear as the *Name of input raster*. - Напечатайте в *Шаг горизонталей* 1,00 🕏 значение 100 (тогда будут создаваться изолинии с интервалом в 100 метров). - Введите в поле *Имя выходного векторного слоя* имя ctour_100. - Нажмите кнопку [Выполнить] для начала процесса. Подождите некоторое время, пока в окне вывода не появится сообщение Успешное завершение. Тогда нажмите кнопку [Открыть вывод] и кнопку [Закрыть]. Так как текущий регион довольно обширен, отображение на экране может занять какое-то время. После завершения отрисовки вы можете открыть окно свойств слоя, чтобы изменить цвет линии, так, чтобы изолинии были заметны на слое рельефа, как описано в разделе Свойства векторного слоя. Next, zoom in to a small, mountainous area in the center of Alaska. Zooming in close, you will notice that the contours have sharp corners. GRASS offers the **v.generalize** tool to slightly alter vector maps while keeping their overall shape. The tool uses several different algorithms with different purposes. Some of the algorithms (i.e., Douglas Peuker and Vertex Reduction) simplify the line by removing some of the vertices. The resulting vector will load faster. This process is useful when you have a highly detailed vector, but you are creating a very small-scale map, so the detail is unnecessary. ### Совет: Инструмент упрощения геометрии Note that the QGIS fTools plugin has a $Simplify\ geometries \to tool$ that works just like the GRASS v.generalize Douglas-Peuker algorithm. However, the purpose of this example is different. The contour lines created by **r.contour** have sharp angles that should be smoothed. Among the **v.generalize** algorithms, there is Chaiken's, which does just that (also Hermite splines). Be aware that these algorithms can **add** additional vertices to the vector, causing it to load even more slowly. - Open the GRASS Toolbox and double-click the categories $Vector \rightarrow Develop \ map \rightarrow Generalization$, then click on the **v.generalize** module to open its options window. - Проверьте, что в поле Имя исходного векторного слоя находится вектор ctour_100. - From the list of algorithms, choose Chaiken's. Leave all other options at their default, and scroll down to the last row to enter in the field *Name for output vector map* 'ctour_100_smooth', and click [Run]. - The process takes several moments. Once Successfully finished appears in the output windows, click [View output] and then [Close]. - Вы можете изменить цвет векторных изолиний, чтобы четче отобразить их поверх растра и в контрасте с оригинальными изолиниями. Вы заметите, что новые изолинии имеют более гладкие края, чем оригинальные, оставаясь в целом исходной формы. Рис. 16.12: Модуль GRASS v.generalize для сглаживания объектов векторного слоя 🕰 #### Cobet: Другие применения модуля r.contour The procedure described above can be used in other equivalent situations. If you have a raster map of precipitation data, for example, then the same method will be used to create a vector map of isohyetal (constant rainfall) lines. ## Creating a Hillshade 3-D effect Several methods are used to display elevation layers and give a 3-D effect to maps. The use of contour lines, as shown above, is one popular method often chosen to produce topographic maps. Another way to display a 3-D effect is by hillshading. The hillshade effect is created from a DEM (elevation) raster by first calculating the slope and aspect of each cell, then simulating the sun's position in the sky and giving a reflectance value to each cell. Thus, you get sun-facing slopes lighted; the slopes facing away from the sun (in shadow) are darkened. - Begin this example by loading the gtopo30 elevation raster. Start the GRASS Toolbox, and under the Raster category, double-click to open Spatial analysis \rightarrow Terrain analysis. - Затем выберите **r.shaded.relief**, чтобы открыть этот модуль. - Измените значение поля Азимут 1,00 ♀ с 270 на 315. - Введите gtopo30_shade в качестве имени нового растра теневой отмывки и нажмите [Выполнить. - Когда процесс закончится, добавьте растр отмывки на карту. Как вы видите, он отображается в серой цветовой шкале. - To view both the hillshading and the colors of the gtopo30 together, move the hillshade map below the gtopo30 map in the table of contents, then open the *Properties* window of gtopo30, switch to the *Transparency* tab and set its transparency level to about 25%. Вы должны получить слой рельефа gtopo30 с его цветовой картой и заданной прозрачностью поверх слоя отмывки в серых тонах. Для того, чтобы оценить визуальный эффект теневой отмывки рельефа, отключите слой gtopo30_shade, затем опять верните его. #### Использование оболочки GRASS The GRASS plugin in QGIS is designed for users who are new to GRASS and not familiar with all the modules and options. As such, some modules in the Toolbox do not show all the options available, and some modules do not appear at all. The GRASS shell (or console) gives the user access to those additional GRASS modules that do not appear in the Toolbox tree, and also to some additional options to the modules that are in the Toolbox with the
simplest default parameters. This example demonstrates the use of an additional option in the **r.shaded.relief** module that was shown above. Рис. 16.13: Оболочка GRASS, модуль r.shaded.relief 🗘 The module **r.shaded.relief** can take a parameter **zmult**, which multiplies the elevation values relative to the X-Y coordinate units so that the hillshade effect is even more pronounced. - Load the gtopo30 elevation raster as above, then start the GRASS Toolbox and click on the GRASS shell. In the shell window, type the command r.shaded.relief map=gtopo30 shade=gtopo30_shade2 azimuth=315 zmult=3 and press [Enter]. - After the process finishes, shift to the *Browse* tab and double-click on the new gtopo30_shade2 raster to display it in QGIS. - As explained above, move the shaded relief raster below the gtopo30 raster in the table of contents, then check the transparency of the colored gtopo30 layer. You should see that the 3-D effect stands out more strongly compared with the first shaded relief map. Рис. 16.14: Карта теневой отмывки рельефа, созданная с помощью модуля r.shaded.relief 🚨 #### Растровая статистика на векторной карте Следующий пример показывает, как модуль GRASS может обрабатывать растровые данные и добавлять колонки статистики для каждого полигона в векторном слое. - Снова используем данные набора данных Alaska, ссылаясь на $\mathit{Импорт}$ данных в область GRASS для импорта shape-файла растительности из директории shapefiles в GRASS. - Now an intermediate step is required: centroids must be added to the imported trees map to make it a complete GRASS area vector (including both boundaries and centroids). - From the Toolbox, choose $Vector \rightarrow Manage\ features$, and open the module **v.centroids**. - Введите в поле *Имя выходного векторного слоя* имя forest_areas и запустите модуль. - Now load the forest_areas vector and display the types of forests deciduous, evergreen, mixed in different colors: In the layer *Properties* window, *Symbology* tab, choose from *Legend type* 'Unique value' and set the *Classification field* to 'VEGDESC'. (Refer to the explanation of the symbology tab in *sec symbology* of the vector section.) - Next, reopen the GRASS Toolbox and open $Vector \rightarrow Vector \ update$ by other maps. - Click on the v.rast.stats module. Enter gtopo30 and forest_areas. - Only one additional parameter is needed: Enter *column prefix* elev, and click [Run]. This is a computationally heavy operation, which will run for a long time (probably up to two hours). - Finally, open the forest_areas attribute table, and verify that several new columns have been added, including elev_min, elev_max, elev_mean, etc., for each forest polygon. #### 16.9.3 Работа с браузером GRASS Another useful feature inside the GRASS Toolbox is the GRASS LOCATION browser. In figure grass module 7, you can see the current working LOCATION with its MAPSETs. In the left browser windows, you can browse through all MAPSETs inside the current LOCATION. The right browser window shows some meta-information for selected raster or vector layers (e.g., resolution, bounding box, data source, connected attribute table for vector data, and a command history). Рис. 16.15: Браузер GRASS 🚨 The toolbar inside the *Browser* tab offers the following tools to manage the selected LOCATION: - 🍑 Добавить выбранную карту в область QGIS - Б Копировать выбранную карту - 🖻 Переименовать выбранную карту - 🚱 Удалить выбранную карту - 🎞 Задать регион по границам выбранной карты - 🕝 Обновить Инструменты Переименовать выбранную карту и Удалить выбранную карту работают только с картами внутри текущего выбранного набора. Все остальные инструменты работают также с растровыми и векторными слоями в других наборах. #### 16.9.4 Настройка инструментов GRASS Nearly all GRASS modules can be added to the GRASS Toolbox. An XML interface is provided to parse the pretty simple XML files that configure the modules' appearance and parameters inside the Toolbox. Простой XML-файл для генерации модуля v.buffer (v.buffer.qgm) выглядит примерно так: The parser reads this definition and creates a new tab inside the Toolbox when you select the module. A more detailed description for adding new modules, changing a module's group, etc., can be found on the QGIS wiki at $\frac{\text{http://hub.qgis.org/projects/quantum-gis/wiki/Adding_New_Tools_to_the_GRASS_Toolbox.}$ # Фреймвок геообработки QGIS # 17.1 Введение This chapter introduces the QGIS processing framework, a geoprocessing environment that can be used to call native and third-party algorithms from QGIS, making your spatial analysis tasks more productive and easy to accomplish. In the following sections, we will review how to use the graphical elements of this framework and make the most out of each one of them. There are four basic elements in the framework GUI, which are used to run algorithms for different purposes. Choosing one tool or another will depend on the kind of analysis that is to be performed and the particular characteristics of each user and project. All of them (except for the batch processing interface, which is called from the toolbox, as we will see) can be accessed from the Processing menu item. (You will see more than four entries. The remaining ones are not used to execute algorithms and will be explained later in this chapter.) • Панель инструментов. Является основным элементом графического интерфейса, позволяет выполнять как единичный алгоритм, так и запускать групповую обработку. Рис. 17.1: Панель инструментов 🤊 • The graphical modeler. Several algorithms can be combined graphically using the modeler to define a workflow, creating a single process that involves several subprocesses. Рис. 17.2: Редактор моделей 弩 - The history manager. All actions performed using any of the aforementioned elements are stored in a history file and can be later easily reproduced using the history manager. - Интерфейс пакетной обработки. Позволяет применять один алгоритм к нескольким наборам данных одновременно. In the following sections, we will review each one of these elements in detail. # 17.2 Панель инструментов The *Toolbox* is the main element of the processing GUI, and the one that you are more likely to use in your daily work. It shows the list of all available algorithms grouped in different blocks, and it is the access point to run them, whether as a single process or as a batch process involving several executions of the same algorithm on different sets of inputs. В панели инструментов отображаются все доступные алгоритмы, собранные в группы. Группы в свою очередь являются дочерними элементами узла *Geoalgorithms*. Additionally, two more entries are found, namely *Models* and *Scripts*. These include user-created algorithms, and they allow you to define your own workflows and processing tasks. We will devote a full section to them a bit later. In the upper part of the toolbox, you will find a text box. To reduce the number of algorithms shown in the toolbox and make it easier to find the one you need, you can enter any word or phrase on the text box. Notice that, as you type, the number of algorithms in the toolbox is reduced to just those that contain the text you have entered in their names. Рис. 17.3: Журнал 🤎 Рис. 17.4: Интерфейс групповой обработки 尽 Рис. 17.5: Панель инструментов 尽 In the lower part, you will find a box that allows you to switch between the simplified algorithm list (the one explained above) and the advanced list. If you change to the advanced mode, the toolbox will look like this: In the advanced view, each group represents a so-called 'algorithm provider', which is a set of algorithms coming from the same source, for instance, from a third-party application with geoprocessing capabilities. Some of these groups represent algorithms from third-party applications like SAGA, GRASS or R, while others contain algorithms directly coded as part of the processing plugin, not relying on any additional software. This view is recommended to those users who have a certain knowledge of the applications that are backing the algorithms, since they will be shown with their original names and groups. Also, some additional algorithms are available only in the advanced view, such as LiDAR tools and scripts based on the R statistical computing software, among others. Independent QGIS plugins that add new algorithms to the toolbox will only be shown in the advanced view. В частности, упрощённый вид содержит алгоритмы следующих провайдеров: - GRASS - SAGA - OTB - «Родные» алгоритмы QGIS In the case of running QGIS under Windows, these algorithms are fully-functional in a fresh installation of QGIS, and they can be run without requiring any additional installation. Also, running them requires no prior knowledge of the external applications they use, making them more accessible for first-time users. If you want to use an algorithm not provided by any of the above providers, switch to the advanced mode by selecting the corresponding option at the bottom of the toolbox. Для запуска алгоритма необходимо выполнить двойной щелчок по его имени в панели инструментов. Рис. 17.6: Панель инструментов (расширенный режим) 🧳 # 17.2.1 Диалог алгоритма Once you double-click on the name of the algorithm that you want to execute, a dialog similar to that in the figure below is shown (in this case, the dialog corresponds to the SAGA 'Convergence index' algorithm). This dialog is used to set the input values that the algorithm needs to be executed. It shows a table where input values and configuration parameters are to be set. It of course has a different content, depending on the requirements of the algorithm to be executed, and is created automatically based on those requirements. On the left side, the name of the parameter is shown. On the right side, the value of the parameter can be set. Although the number and type of parameters depend on the characteristics of the algorithm, the structure
is similar for all of them. The parameters found in the table can be of one of the following types. - A raster layer, to select from a list of all such layers available (currently opened) in QGIS. The selector contains as well a button on its right-hand side, to let you select filenames that represent layers currently not loaded in QGIS. - A vector layer, to select from a list of all vector layers available in QGIS. Layers not loaded in QGIS can be selected as well, as in the case of raster layers, but only if the algorithm does not require a table field selected from the attributes table of the layer. In that case, only opened layers can be selected, since they need to be open so as to retrieve the list of field names available. Возле каждого поля выбора векторного слоя находится ещё одна кнопка, как показано на рисунке ниже. If the algorithm contains several of them, you will be able to toggle just one of them. If the button corresponding to a vector input is toggled, the algorithm will be executed iteratively on each one of its features, instead of just once for the whole layer, producing as many outputs as times the algorithm is executed. This allows for automating the process when all features in a layer have to be processed separately. • A table, to select from a list of all available in QGIS. Non-spatial tables are loaded into QGIS like vector layers, and in fact they are treated as such by the program. Currently, the list of available tables that you will see when executing an algorithm that needs one of them is restricted to tables coming from files in dBase (.dbf) or Comma-Separated Values (.csv) formats. Рис. 17.7: Диалог алгоритма 🤊 Рис. 17.8: Кнопка пообъектного выполнения 🥰 - Выбор выпадающий список предустановленных значений, из которого необходимо выбрать одно. - A numerical value, to be introduced in a text box. You will find a button by its side. Clicking on it, you will see a dialog that allows you to enter a mathematical expression, so you can use it as a handy calculator. Some useful variables related to data loaded into QGIS can be added to your expression, so you can select a value derived from any of these variables, such as the cell size of a layer or the northernmost coordinate of another one. - Диапазон числовых значений задаётся минимальным и максимальным значениями. - Текст строковая величина - Имя поля атрибутивной таблицы выбирается из списка полей таблицы или слоя, заданных другим параметром. - A coordinate reference system. You can type the EPSG code directly in the text box, or select it from the CRS selection dialog that appears when you click on the button on the right-hand side. - An extent, to be entered by four numbers representing its xmin, xmax, ymin, ymax limits. Clicking on the button on the right-hand side of the value selector, a pop-up menu will appear, giving you two options: to select the value from a layer or the current canvas extent, or to define it by dragging directly onto the map canvas. Если выбран первый вариант, появится следующий диалог. Если же выбран второй вариант, то диалог параметров будет скрыт, и вы сможете указать область на карте. После того, как область будет указана, диалог параметров отобразится, а поле охвата будет содержать значения, соответствующие указанной вами области. • A list of elements (whether raster layers, vector layers or tables), to select from the list of such layers available in QGIS. To make the selection, click on the small button on the left side of the Рис. 17.9: Поле ввода чисел ಶ Рис. 17.10: Выбор охвата 🍠 Рис. 17.11: Список охватов 🧦 Рис. 17.12: Выделение области на карте 🧦 corresponding row to see a dialog like the following one. Рис. 17.13: Множественный выбор ಶ • Пользовательская таблица — небольшая таблица, редактируемая пользователем (например, настройки скользящего окна для работы с растровыми данными). Для редактирования таблицы нажмите на кнопку справа от нее. Рис. 17.14: Таблица 🥰 Depending on the algorithm, the number of rows can be modified or not by using the buttons on the right side of the window. You will find a [Help] tab in the the parameters dialog. If a help file is available, it will be shown, giving you more information about the algorithm and detailed descriptions of what each parameter does. Unfortunately, most algorithms lack good documentation, but if you feel like contributing to the project, this would be a good place to start. #### Немного о проекциях Algorithms run from the processing framework — this is also true of most of the external applications whose algorithms are exposed through it. Do not perform any reprojection on input layers and assume that all of them are already in a common coordinate system and ready to be analized. Whenever you use more than one layer as input to an algorithm, whether vector or raster, it is up to you to make sure that they are all in the same coordinate system. Note that, due to QGIS's on-the-fly reprojecting capabilities, although two layers might seem to overlap and match, that might not be true if their original coordinates are used without reprojecting them onto a common coordinate system. That reprojection should be done manually, and then the resulting files should be used as input to the algorithm. Also, note that the reprojection process can be performed with the algorithms that are available in the processing framework itself. By default, the parameters dialog will show a description of the CRS of each layer along with its name, making it easy to select layers that share the same CRS to be used as input layers. If you do not want to see this additional information, you can disable this functionality in the processing configuration dialog, unchecking the $Show\ CRS$ option. If you try to execute an algorithm using as input two or more layers with unmatching CRSs, a warning dialog will be shown. Вы можете продолжить выполнение алгоритма, но необходимо понимать, что в большинстве случаев результат будет неправильным. Например, итоговые слои будут пустыми, т.к. исходные слои не пересекаются. ### 17.2.2 Данные, создаваёмые алгоритмами В результате работы алгоритма могут быть созданы следующие виды данных: - Растровый слой - Векторный слой - Таблица - Файл HTML (используется для отображения текста и графики) These are all saved to disk, and the parameters table will contain a text box corresponding to each one of these outputs, where you can type the output channel to use for saving it. An output channel contains the information needed to save the resulting object somewhere. In the most usual case, you will save it to a file, but the architecture allows for any other way of storing it. For instance, a vector layer can be stored in a database or even uploaded to a remote server using a WFS-T service. Although solutions like these are not yet implemented, the processing framework is prepared to handle them, and we expect to add new kinds of output channels in a near feature. To select an output channel, just click on the button on the right side of the text box. That will open a save file dialog, where you can select the desired file path. Supported file extensions are shown in the file format selector of the dialog, depending on the kind of output and the algorithm. The format of the output is defined by the filename extension. The supported formats depend on what is supported by the algorithm itself. To select a format, just select the corresponding file extension (or add it, if you are directly typing the file path instead). If the extension of the file path you entered does not match any of the supported formats, a default extension (usually .dbf' for tables, .tif for raster layers and .shp for vector layers) will be appended to the file path, and the file format corresponding to that extension will be used to save the layer or table. If you do not enter any filename, the result will be saved as a temporary file in the corresponding default file format, and it will be deleted once you exit QGIS (take care with that, in case you save your project and it contains temporary layers). You can set a default folder for output data objects. Go to the configuration dialog (you can open it from the *Processing* menu), and in the *General* group, you will find a parameter named *Output folder*. This output folder is used as the default path in case you type just a filename with no path (i.e., myfile.shp) when executing an algorithm. When running an algorithm that uses a vector layer in iterative mode, the entered file path is used as the base path for all generated files, which are named using the base name and appending a number representing the index of the iteration. The file extension (and format) is used for all such generated files. Apart from raster layers and tables, algorithms also generate graphics and text as HTML files. These results are shown at the end of the algorithm execution in a new dialog. This dialog will keep the results produced by any algorithm during the current session, and can be shown at any time by selecting $Processing \rightarrow Results\ viewer$ from the QGIS main menu. Some external applications might have files (with no particular extension restrictions) as output, but they do not belong to any of the categories above. Those output files will not be processed by QGIS (opened or included into the current QGIS project), since most of the time they correspond to file formats or elements not supported by QGIS. This is, for instance, the case with LAS files used for LiDAR data. The files get created, but you won't see anything new in your QGIS working session. For all the other types of output, you will find a checkbox that you can use to tell the algorithm whether to load the file once it is generated by the algorithm or not. By default, all files are opened. Optional outputs are not supported. That is, all outputs are created. However, you can uncheck the corresponding checkbox if you are not interested in a given output, which
essentially makes it behave like an optional output (in other words, the layer is created anyway, but if you leave the text box empty, it will be saved to a temporary file and deleted once you exit QGIS). ## 17.2.3 Настройка платформы геообработки As has been mentioned, the configuration menu gives access to a new dialog where you can configure how algorithms work. Configuration parameters are structured in separate blocks that you can select on the left-hand side of the dialog. Наряду с уже упоминавшимся параметром Output folder, в группе General можно задать стили для отрисовки слоёв по умолчанию (т.е. для слоёв, созданных при помощи любого алгоритма платформы). Просто создайте необходимый стиль, сохраните его в файл, а затем укажите путь к этому файлу в настройках и алгоритмы станут использовать его. Каждый слой, добавляемый в проект алгоритмом будет отрисован с использованием указанного стиля. Стили отрисовки могут настраиваться отдельно для каждого алгоритма и каждого выходного параметра. Вызовите контекстное меню, нажав правую кнопку мыши на алгоритме в панели инструментов и выберите *Edit rendering styles*. Откроется диалог похожий на этот. Рис. 17.15: Стили отрисовки 🥰 Укажите файл стиля .qml для каждого выходного файла и нажмите [OK]. Other configuration parameters in the *General* group are listed below: - Use filename as layer name. The name of each resulting layer created by an algorithm is defined by the algorithm itself. In some cases, a fixed name might be used, meaning that the same output name will be used, no matter which input layer is used. In other cases, the name might depend on the name of the input layer or some of the parameters used to run the algorithm. If this checkbox is checked, the name will be taken from the output filename instead. Notice that, if the output is saved to a temporary file, the filename of this temporary file is usually a long and meaningless one intended to avoid collision with other already existing filenames. - Use only selected features. If this option is selected, whenever a vector layer is used as input for an algorithm, only its selected features will be used. If the layer has no selected features, all features will be used. - Pre-execution script file and Post-execution script file. These parameters refer to scripts written using the processing scripting functionality, and are explained in the section covering scripting and the console. Apart from the *General* block in the settings dialog, you will also find a block for algorithm providers. Each entry in this block contains an *Activate* item that you can use to make algorithms appear or not in the toolbox. Also, some algorithm providers have their own configuration items, which we will explain later when covering particular algorithm providers. # 17.3 Редактор моделей The graphical modeler allows you to create complex models using a simple and easy-to-use interface. When working with a GIS, most analysis operations are not isolated, but rather part of a chain of operations instead. Using the graphical modeler, that chain of processes can be wrapped into a single process, so it is as easy and convenient to execute as a single process later on a different set of inputs. No matter how many steps and different algorithms it involves, a model is executed as a single algorithm, thus saving time and effort, especially for larger models. Редактор моделей можно вызвать из меню Ananus o Pedakmop моделей Окно построителя моделей состоит из двух частей: слева находится панель вкладок, в ней выбирают составные элементы модели (исходные данные и алгоритмы), справа — рабочая область, где и создаётся модель. Создание модели условно можно разделить на два этапа: - 1. Definition of necessary inputs. These inputs will be added to the parameters window, so the user can set their values when executing the model. The model itself is an algorithm, so the parameters window is generated automatically as it happens with all the algorithms available in the processing framework. - 2. Definition of the workflow. Using the input data of the model, the workflow is defined by adding algorithms and selecting how they use those inputs or the outputs generated by other algorithms already in the model. # 17.3.1 Определение исходных данных Перед созданием модели нужно задать необходимые исходные данные. Все доступные исходные данные собраны в левой части окна построителя моделей, на вкладке Исходные данные: - растровый слой (raster layer) - векторный слой (vector layer) - строка (string) - поле таблицы (table field) Рис. 17.16: Редактор моделей ಶ - таблица (table) - oxbat (extent) - число (number) - логическая величина (boolean) - файл (file) Double-clicking on any of these elements, a dialog is shown to define its characteristics. Depending on the parameter itself, the dialog may contain just one basic element (the description, which is what the user will see when executing the model) or more of them. For instance, when adding a numerical value, as can be seen in the next figure, apart from the description of the parameter, you have to set a default value and a range of valid values. Рис. 17.17: Настройки модели 🧳 После заполнения полей, в рабочую область построения модели добавится новый блок, соответствующий новому элементу. Рис. 17.18: Настройки модели 弩 ## 17.3.2 Описание процесса После того, как заданы все исходные данные, можно приступать к описанию процесса анализа. Доступные алгоритмы находятся на вкладке Algorithms в левой части окна. Алгоритмы сгруппированы точно так же как и в панели инструментов. Рис. 17.19: Настройки модели 弩 The appearance of the toolbox has two modes here as well: simplified and advanced. However, there is no element to switch between views in the modeler, so you have to do it in the toolbox. The mode that is selected in the toolbox is the one that will be used for the list of algorithms in the modeler. To add an algorithm to a model, double-click on its name. An execution dialog will appear, with a content similar to the one found in the execution panel that is shown when executing the algorithm from the toolbox. The one shown next corresponds to the SAGA 'Convergence index' algorithm, the same example we saw in the section dedicated to the toolbox. As you can see, some differences exist. Instead of the file output box that was used to set the file path for output layers and tables, a simple text box is used here. If the layer generated by the algorithm is just a temporary result that will be used as the input of another algorithm and should not be kept as a final result, just do not edit that text box. Typing anything in it means that the result is final and the Рис. 17.20: Настройки модели 弩 text that you supply will be the description for the output, which will be the output the user will see when executing the model. Selecting the value of each parameter is also a bit different, since there are important differences between the context of the modeler and that of the toolbox. Let's see how to introduce the values for each type of parameter. - Layers (raster and vector) and tables. These are selected from a list, but in this case, the possible values are not the layers or tables currently loaded in QGIS, but the list of model inputs of the corresponding type, or other layers or tables generated by algorithms already added to the model. - Numerical values. Literal values can be introduced directly in the text box. But this text box is also a list that can be used to select any of the numerical value inputs of the model. In this case, the parameter will take the value introduced by the user when executing the model. - String. As in the case of numerical values, literal strings can be typed, or an input string can be selected. - Table field. The fields of the parent table or layer cannot be known at design time, since they depend on the selection of the user each time the model is executed. To set the value for this parameter, type the name of a field directly in the text box, or use the list to select a table field input already added to the model. The validity of the selected field will be checked at run time. In all cases, you will find an additional parameter named *Parent algorithms* that is not available when calling the algorithm from the toolbox. This parameter allows you to define the order in which algorithms are executed by explicitly defining one algorithm as a parent of the current one, which will force the parent algorithm to be executed before the current one. When you use the output of a previous algorithm as the input of your algorithm, that implicitly sets the previous algorithm as parent of the current one (and places the corresponding arrow in the modeler canvas). However, in some cases an algorithm might depend on another one even if it does not use any output object from it (for instance, an algorithm that executes an SQL sentence on a PostGIS database and another one that imports a layer into that same database). In that case, just select the previous algorithm in the *Parent algorithms* parameter and the two steps will be executed in the correct order. Once all the parameters have been assigned valid values, click on [OK] and the algorithm will be added to the canvas. It will be linked to all the other elements in the canvas, whether algorithms or inputs, that provide objects that are used as inputs for that algorithm. Elements can be dragged to a different position within the canvas, to change the way the module structure is displayed and make it more clear and intuitive. Links between elements are updated automatically. You can run your algorithm anytime by clicking on the [Run] button. However, in order to use the algorithm from the toolbox, it has to be saved and the modeler dialog closed, to allow the toolbox to refresh its contents. # 17.3.3 Сохранение и загрузка модели Use the [Save] button to save the current model and the [Open] button to open any model previously saved.
Models are saved with the .model extension. If the model has been previously saved from the modeler window, you will not be prompted for a filename. Since there is already a file associated with that model, the same file will be used for any subsequent saves. Прежде чем сохранять модель, ей надо дать имя и указать в какой группе она будет находиться. Эти данные вносятся в два поля над рабочей областью построителя моделей. Models saved on the models folder (the default folder when you are prompted for a filename to save the model) will appear in the toolbox in the corresponding branch. When the toolbox is invoked, it searches the models folder for files with the .model extension and loads the models they contain. Since a model is itself an algorithm, it can be added to the toolbox just like any other algorithm. Расположение каталога моделей, при желании путь можно изменить в настройках в группе Modeler. Модели, загруженные из каталога models появляются не только в панели инструментов, но и в списке алгоритмов вкладки Aлгоритмы редактора моделей. Это значит, что модель может использоваться внутри более крупной модели, как любой другой алгоритм. In some cases, a model might not be loaded because not all the algorithms included in its workflow are available. If you have used a given algorithm as part of your model, it should be available (that is, it should appear in the toolbox) in order to load that model. Deactivating an algorithm provider in the processing configuration window renders all the algorithms in that provider unusable by the modeler, which might cause problems when loading models. Keep that in mind when you have trouble loading or executing models. ### 17.3.4 Редактирование модели Текущую модель можно редактировать, изменяя описание процесса и меняя связи между алгоритмами и исходными данными, описающими модель. Нажатие правой клавиши мыши на блоке алгоритма вызовет следующее контекстное меню: Рис. 17.21: Контекстное меню при создании модели 🥰 Выбор пункта *Remove* приведет к удалению выделенного блока алгоритма. Необходимо помнить, что алгоритм может быть удален тогда и только тогда, когда нет других, зависящих от него, алгоритмов. Т.е. результаты удаляемого алгоритма нигде не используются. Если вы попытаетесь удалить алгоритм, от которого зависят другие алгоритмы, появится предупреждение: Рис. 17.22: Ошибка удаления алгоритма 🤊 Пункт Edit или просто двойной щелчок по блоку алгоритма откроют диалог настройки параметров, где можно изменить исходные данные и значения параметров. В этом случае в качестве доступных исходных данных будут отображены не все имеющиеся в модели данные. Слои и значения, созданные на более поздних этапах процесса будут недоступны, если они приводят к циклическим зависимостям. Выберите новые значения и нажмите кнопку [ОК]. Связи между элементами модели будут соответствующим образом обновлены. ## 17.3.5 Activating and deactivating algorithms Algorithms can be deactivated in the modeler, so they will not be executed once the model is run. This can be used to test just a given part of the model, or when you do not need all the outputs it generates. To deactivate an algorithm, right-click on its icon in the model canvas and select the *Deactivate* option. You will see that the algorithm is represented now with a red label under its name indicating that it is not active. Рис. 17.23: Deactivate 🧳 All algorithms depending (directly or indirectly) on that algorithm will also appear as inactive, since they cannot be executed now. To activate an algorithm, just right-click on its icon and select the Activate option. #### 17.3.6 Документирование моделей Созданные модели можно документировать. Для этого нажмите на кнопку [Edit model help], откроется диалог редактирования описания модели. On the right-hand side, you will see a simple HTML page, created using the description of the input parameters and outputs of the algorithm, along with some additional items like a general description of the model or its author. The first time you open the help editor, all these descriptions are empty, but you can edit them using the elements on the left-hand side of the dialog. Select an element on the upper part and then write its description in the text box below. Описание модели сохраняется в тот же каталог, что и сама модель, автоматически при сохранении модели. # 17.3.7 Немного о доступных алгоритмах You might notice that some algorithms that can be be executed from the toolbox do not appear in the list of available algorithms when you are designing a model. To be included in a model, an algorithm Рис. 17.24: Редактирование описания модели 🐬 must have a correct semantic, so as to be properly linked to others in the workflow. If an algorithm does not have such a well-defined semantic (for instance, if the number of output layers cannot be known in advance), then it is not possible to use it within a model, and thus, it does not appear in the list of algorithms that you can find in the modeler dialog. Additionally, you will see some algorithms in the modeler that are not found in the toolbox. These algorithms are meant to be used exclusively as part of a model, and they are of no interest in a different context. The 'Calculator' algorithm is an example of that. It is just a simple arithmetic calculator that you can use to modify numerical values (entered by the user or generated by some other algorithm). This tool is really useful within a model, but outside of that context, it doesn't make too much sense. ## 17.3.8 Saving models as Python code Given a model, it is possible to automatically create Python code that performs the same task as the model itself. This code is used to create a console script (we will explain scripts later in this manual) and you can modify that script to incorporate actions and methods not available in the graphical modeler, such as loops or conditional sentences. This feature is also a very practical way of learning how to use processing algorithms from the console and how to create new algorithms using Python code, so you can use it as a learning tool when you start creating your own scripts. Save your model in the models folder and go to the toolbox, where it should appear now, ready to be run. Right-click on the model name and select *Save as Python script* in the context menu that will pop up. A dialog will prompt you to introduce the file where you want to save the script. . # 17.4 Интерфейс пакетной обработки ## 17.4.1 Введение All algorithms (including models) can be executed as a batch process. That is, they can be executed using not just a single set of inputs, but several of them, executing the algorithm as many times as needed. This is useful when processing large amounts of data, since it is not necessary to launch the algorithm many times from the toolbox. Чтобы запустить алгоритм в режиме пакетной обработки выделите его в панели инструментов, вызовите контекстное меню и выберите пункт *Execute as batch process*. Рис. 17.25: Запуск пакетной обработки из констекстного меню 🥰 ### 17.4.2 Таблица параметров Запуск пакетной обработки во многом схож с выполнением единичной операции. Отличие лишь в том, что параметры теперь задаются для каждой итерации обработки. Диалог настройки в этом случае принимает вид таблицы. Рис. 17.26: Пакетная обработка 🧗 Каждая строка таблицы соответствует одному запуску алгоритма, в ячейках находятся параметры. Это похоже на обычный диалог настройки алгоритмов, только используется другое расположение элементов. По умолчанию в таблице три строки, при необходимости добавить или удалить строки можно при помощи кнопок внизу окна. После того, как размер таблицы (число строк в ней) задан, можно приступать к её заполнению. ### 17.4.3 Заполнение таблицы параметров For most parameters, setting the value is trivial. Just type the value or select it from the list of available options, depending on the parameter type. The main differences are found for parameters representing layers or tables, and for output file paths. Regarding input layers and tables, when an algorithm is executed as part of a batch process, those input data objects are taken directly from files, and not from the set of them already opened in QGIS. For this reason, any algorithm can be executed as a batch process, even if no data objects at all are opened and the algorithm cannot be run from the toolbox. Filenames for input data objects are introduced directly typing or, more conveniently, clicking on the button on the right hand of the cell, which shows a typical file chooser dialog. Multiple files can be selected at once. If the input parameter represents a single data object and several files are selected, each one of them will be put in a separate row, adding new ones if needed. If the parameter represents a multiple input, all the selected files will be added to a single cell, separated by semicolons (;). Output data objects are always saved to a file and, unlike when executing an algorithm from the toolbox, saving to a temporary file is not permitted. You can type the name directly or use the file chooser dialog that appears when clicking on the accompanying button. После выбора выходного файла появится ещё один диалог, позволяющий автоматически заполнить остальные ячейки. Рис. 17.27: Диалог автозаполнения Если выбрано значение *Do not autofill* (по умолчанию), в заданную ячейку будет просто вставлено выбранное имя файла. Если же выбрано любое другое значение, будут заполнены все ячейки. При этом имена файлов будут сформированы на основе указаного критерия автозаполнения. Такой подход значительно ускоряет заполнение таблицы параметров пакетной обработки. Automatic filling can be done by simply adding correlative numbers to the selected file path, or by appending the value of another field at the same row. This is particularly useful for naming output data objects according to input ones. Рис. 17.28: Заполненые пути при пакетной обработке 🤊 #### 17.4.4 Выполнение пакетной
обработки После заполнения всех необходимых полей можно запустить процесс пакетной обработки просто нажав на кнопку [OK]. В нижней части диалога будет отображаться общий прогресс. . # 17.5 Изпользование алгоритмов геообработки в консоли The console allows advanced users to increase their productivity and perform complex operations that cannot be performed using any of the other GUI elements of the processing framework. Models involving several algorithms can be defined using the command-line interface, and additional operations such as loops and conditional sentences can be added to create more flexible and powerful workflows. There is not a processing console in QGIS, but all processing commands are available instead from the QGIS built-in Python console. That means that you can incorporate those commands into your console work and connect processing algorithms to all the other features (including methods from the QGIS API) available from there. Код, выполняемый в консоли Python, даже если он не вызывает ни одного алгоритма платформы геообработки, может быть преобразован в новый алгоритм, который в дальнейшем может вызываться из панели инструментов или использоваться в редакторе моделей, как любой другой алгоритм. Более того, некоторые алгоритмы, которые вы видите в панели инструментов, на самом деле являются обычными скриптами. In this section, we will see how to use processing algorithms from the QGIS Python console, and also how to write algorithms using Python. ## 17.5.1 Вызов алгоритмов из консоли Python ервое, что нужно сделать при использовании платформы геообработки из командной строки — импортировать модуль processing: ``` >>> import processing ``` Now, there is basically just one (interesting) thing you can do with that from the console: execute an algorithm. That is done using the runalg() method, which takes the name of the algorithm to execute as its first parameter, and then a variable number of additional parameters depending on the requirements of the algorithm. So the first thing you need to know is the name of the algorithm to execute. That is not the name you see in the toolbox, but rather a unique command—line name. To find the right name for your algorithm, you can use the algslist() method. Type the following line in your console: ## >>> processing.alglist() На консоль будет выведено что-то вроде этого ``` Accumulated Cost (Anisotropic)----->saga:accumulatedcost(anisotropic) Accumulated Cost (Isotropic)----->saga:accumulatedcost(isotropic) Add Coordinates to points----->saga:addcoordinatestopoints Add Grid Values to Points----->saga:addgridvaluestopoints Add Grid Values to Shapes----->saga:addgridvaluestoshapes Add Polygon Attributes to Points----->saga:addpolygonattributestopoints Aggregate---->saga:aggregate Aggregate Point Observations----->saga:aggregatepointobservations Aggregation Index----->saga:aggregationindex Analytical Hierarchy Process----->saga:analyticalhierarchyprocess Analytical Hillshading----->saga:analyticalhillshading Average With Mask 1----->saga:averagewithmask1 Average With Mask 2----->saga:averagewithmask2 Average With Thereshold 1----->saga:averagewiththereshold1 Average With Thereshold 2----->saga:averagewiththereshold2 Average With Thereshold 3----->saga:averagewiththereshold3 B-Spline Approximation----->saga:b-splineapproximation ``` Это список всех активных алгоритмов, отсортированный в алфавитном порядке (слева название, справа — внутренее имя). You can use a string as a parameter for this method. Instead of returning the full list of algorithms, it will only display those that include that string. If, for instance, you are looking for an algorithm to calculate slope from a DEM, type alglist("slope") to get the following result: Вывод может несколько отличаться, т.к. он зависит от доступных у вас алгоритмов. Теперь намного легче найти имя необходимого алгоритма, в нашем случае saga:slopeaspectcurvature. Once you know the command-line name of the algorithm, the next thing to do is to determine the right syntax to execute it. That means knowing which parameters are needed and the order in which they have to be passed when calling the runalg() method. There is a method to describe an algorithm in detail, which can be used to get a list of the parameters that an algorithm requires and the outputs that it will generate. To get this information, you can use the alghelp(name_of_the_algorithm) method. Use the command-line name of the algorithm, not the full descriptive name. Calling the method with saga:slopeaspectcurvature as parameter, you get the following description: Теперь у нас есть вся необходимая для запуска алгоритма информация. Как уже было сказано, запуск алгоритма выполняется при помощи метода runalg(). Он имеет следующий синтаксис: Список параметров и результатов зависит от алгоритма, и должен указываться в том порядке, в котором их выдаёт метод alghelp(). Depending on the type of parameter, values are introduced differently. The next list gives a quick review of how to introduce values for each type of input parameter: - Raster Layer, Vector Layer or Table. Simply use a string with the name that identifies the data object to use (the name it has in the QGIS Table of Contents) or a filename (if the corresponding layer is not opened, it will be opened but not added to the map canvas). If you have an instance of a QGIS object representing the layer, you can also pass it as parameter. If the input is optional and you do not want to use any data object, use None. - выбор из списка предустановленных значений. Значение указывается как целочисленный индекс, соответствующий значению. Получить список доступных значений и соответствующие им индексы можно при помощи метода algoptions(). Например: ``` >>> processing.algoptions("saga:slopeaspectcurvature") METHOD(Method) 0 - [0] Maximum Slope (Travis et al. 1975) 1 - [1] Maximum Triangle Slope (Tarboton 1997) 2 - [2] Least Squares Fitted Plane (Horn 1981, Costa-Cabral & Burgess 1996) 3 - [3] Fit 2.Degree Polynom (Bauer, Rohdenburg, Bork 1985) 4 - [4] Fit 2.Degree Polynom (Heerdegen & Beran 1982) ``` ``` 5 - [5] Fit 2.Degree Polynom (Zevenbergen & Thorne 1987) 6 - [6] Fit 3.Degree Polynom (Haralick 1983) ``` In this case, the algorithm has one such parameter, with seven options. Notice that ordering is zero-based. - Multiple input. The value is a string with input descriptors separated by semicolons (;). As in the case of single layers or tables, each input descriptor can be the data object name, or its file path. - имя поля. Регистрозависимое название поля атрибутивной таблицы - Fixed Table. Type the list of all table values separated by commas (,) and enclosed between quotes ("). Values start on the upper row and go from left to right. You can also use a 2-D array of values representing the table. - система координат. Указывается код EPSG нужной системы координат - охват. Значения хміп, хмах, уміп и умах, разделенные запятыми (,). Логические, строковые и числовые значения, а также пути к файлам в дополнительных пояснениях не нуждаются. Input parameters such as strings, booleans, or numerical values have default values. To use them, specify None for the corresponding parameter entry. For output data objects, type the file path to be used to save it, just as it is done from the toolbox. If you want to save the result to a temporary file, use None. The extension of the file determines the file format. If you enter a file extension not supported by the algorithm, the default file format for that output type will be used, and its corresponding extension appended to the given file path. Unlike when an algorithm is executed from the toolbox, outputs are not added to the map canvas if you execute that same algorithm from the Python console. If you want to add an output to the map canvas, you have to do it yourself after running the algorithm. To do so, you can use QGIS API commands, or, even easier, use one of the handy methods provided for such tasks. The runalg method returns a dictionary with the output names (the ones shown in the algorithm description) as keys and the file paths of those outputs as values. You can load those layers by passing the corresponding file paths to the load() method. #### 17.5.2 Дополнительные функции для работы с данными Помимо функций, используемых для запуска алгоритмов, модуль processing предоставляет ряд вспомогательных функций, которые облегчают работу с данными, в частности с векторными данными. Все эти функции являются обёртками над функциями QGIS API, и, обычно, имеют более простой синтаксис. Рекомендуется использовать их при создании новых алгоритмов, т.к. они упрощают работу с исходными данными. Below is a list of some of these commands. More information can be found in the classes under the processing/tools package, and also in the example scripts provided with QGIS. - getobject(obj): Returns a QGIS object (a layer or table) from the passed object, which can be a filename or the name of the object in the QGIS Table of Contents. - values(layer, fields): Returns the values in the attributes table of a vector layer, for the passed fields. Fields can be passed as field names or as zero-based field indices. Returns a dict of lists, with the passed field identifiers as keys. It considers the existing selection. - getfeatures(layer): Returns an iterator over the features of a vector layer, considering the existing selection. - uniquelabels(layer, field): Returns a list of unique values for a given attribute. Attributes can be passed as a field name or a zero-based field index. It considers the existing selection. ### 17.5.3 Создание скриптов и из запуск You can create your own algorithms by writing the corresponding Python code and adding a few extra lines to supply additional information needed to define the semantics of the algorithm. You can find a Create new script menu under the Tools group in the Script algorithms block of the toolbox. Double-click on it to open the script
editing dialog. That's where you should type your code. Saving the script from there in the scripts folder (the default folder when you open the save file dialog) with .py extension will automatically create the corresponding algorithm. Имя файла будет использоваться в качестве имени алгоритма в панели инструментов (при этом расширение отбрасывается, а подчеркивания заменяются пробелами). Let's have a look at the following code, which calculates the Topographic Wetness Index (TWI) directly from a DEM. As you can see, the calculation involves three algorithms, all of them coming from SAGA. The last one calculates the TWI, but it needs a slope layer and a flow accumulation layer. We do not have these layers, but since we have the DEM, we can calculate them by calling the corresponding SAGA algorithms. Если вы внимательно читали предыдущий раздел, разобраться в коде будет достаточно легко. Сейчас наибольший интерес для нас представляют первые три строчки, начинающиеся символами ##. Эти строки, необходимы для правильной работы со скриптом, именно они позволяют выполнять скрипт, а также использовать его в моделях, как и любой другой алгоритм. These lines start with a double Python comment symbol (##) and have the following structure: ``` [parameter_name] = [parameter_type] [optional_values] ``` Here is a list of all the parameter types that are supported in processing scripts, their syntax and some examples. - raster. A raster layer. - vector. A vector layer. - table. A table. - number. A numerical value. A default value must be provided. For instance, depth=number 2.4. - string. A text string. As in the case of numerical values, a default value must be added. For instance, name=string Victor. - boolean. A boolean value. Add True or False after it to set the default value. For example, verbose=boolean True. - multiple raster. Набор растровых слоёв - multiple vector. Набор векторных слоёв - field. Поле атрибутивной таблицы, необходимо указать слой или таблицу, из которого будет браться поле. Например, если задан параметр mylayer=vector, то поле атрибутивной таблицы слоя mylayer описывается так myfield=field mylayer - folder. A folder. - file. A filename. Название параметра будет использоваться как в качестве подписи соответствующего поля ввода при запуске алгоритма, так и в качестве переменной внутри скрипта, которой будет присвоено введенное пользователем значение. When showing the name of the parameter to the user, the name will be edited to improve its appearance, replacing low hyphens with spaces. So, for instance, if you want the user to see a parameter named A numerical value, you can use the variable name A_numerical_value. Layers and table values are strings containing the file path of the corresponding object. To turn them into a QGIS object, you can use the processing.getObjectFromUri() function. Multiple inputs also have a string value, which contains the file paths to all selected object, separated by semicolons (;). Результаты описываются точно также, с использованием следующих типов: - output raster - output vector - output table - output html - output file - output number - output string The value assigned to the output variables is always a string with a file path. It will correspond to a temporary file path in case the user has not entered any output filename. When you declare an output, the algorithm will try to add it to QGIS once it is finished. That is why, although the runalg() method does not load the layers it produces, the final TWI layer will be loaded (using the case of our previous example), since it is saved to the file entered by the user, which is the value of the corresponding output. Do not use the load() method in your script algorithms, just when working with the console line. If a layer is created as output of an algorithm, it should be declared as such. Otherwise, you will not be able to properly use the algorithm in the modeler, since its syntax (as defined by the tags explained above) will not match what the algorithm really creates. Hidden outputs (numbers and strings) do not have a value. Instead, you have to assign a value to them. To do so, just set the value of a variable with the name you used to declare that output. For instance, if you have used this declaration, #### ##average=output number следующая строка установит значение выходного параметра равным 5: #### average = 5 В дополнение к тегам параметров и результатов, можно задавать группу, в которой будет отображаться новый алгоритм. Для этого служит тег group. If your algorithm takes a long time to process, it is a good idea to inform the user. You have a global named progress available, with two possible methods: setText(text) and setPercentage(percent) to modify the progress text and the progress bar. Several examples are provided. Please check them to see real examples of how to create algorithms using the processing framework classes. You can right-click on any script algorithm and select *Edit script* to edit its code or just to see it. #### 17.5.4 Документирование скриптов As in the case of models, you can create additional documentation for your scripts, to explain what they do and how to use them. In the script editing dialog, you will find an **[Edit script help]** button. Click on it and it will take you to the help editing dialog. Check the section about the graphical modeler to know more about this dialog and how to use it. Help files are saved in the same folder as the script itself, adding the .help extension to the filename. Notice that you can edit your script's help before saving the script for the first time. If you later close the script editing dialog without saving the script (i.e., you discard it), the help content you wrote will be lost. If your script was already saved and is associated to a filename, saving the help content is done automatically. # 17.5.5 Хуки пред- и постобработки Скрипты также могут использоваться для создания хуков пред- и постобработки, которые будут выполняться перед запуском алгоритма и по окончанию обработки. Эта возможность может пригодиться для автоматизации задач, выполняемых перед обработкой данных. Синтаксис идентичек описанному выше, в дополнение доступна глобальная переменная alg, являющаяся алгоритмом, которы был (или будет) выполнен. In the *General* group of the processing configuration dialog, you will find two entries named *Pre-execution* script file and *Post-execution* script file where the filename of the scripts to be run in each case can be entered. ## . # 17.6 Журнал # 17.6.1 Журнал При каждом запуске алгоритма, информация о процессе сохраняется менеджером истории. Записываются как используемые параметры, так и дата и время выполнения алгоритма. This way, it is easy to track and control all the work that has been developed using the processing framework, and easily reproduce it. The history manager is a set of registry entries grouped according to their date of execution, making it easier to find information about an algorithm executed at any particular moment. Информация о процессе сохраняется в виде выражения командной строки, даже если алгоритм был запущен из панели инструментов. Это делает менеджер истории полезным также при изучении возможностей командной строки SEXTANTE, т.к. можно запустить алгоритм из панели инструментов, а затем посмотреть в менеджере истории как его вызывать из командной строки. Apart from browsing the entries in the registry, you can also re-execute processes by simply double-clicking on the corresponding entry. Along with recording algorithm executions, the processing framework communicates with the user by means of the other groups of the registry, namely *Errors*, *Warnings* and *Information*. In case something is not working properly, having a look at the *Errors* might help you to see what is happening. If you get in contact with a developer to report a bug or error, the information in that group will be very useful for her or him to find out what is going wrong. Third-party algorithms are usually executed by calling their command-line interfaces, which communicate with the user via the console. Although that console is not shown, a full dump of it is stored in the *Information* group each time you run one of those algorithms. If, for instance, you are having problems executing a SAGA algorithm, look for an entry named 'SAGA execution console output' to check all the messages generated by SAGA and try to find out where the problem is. Some algorithms, even if they can produce a result with the given input data, might add comments or additional information to the *Warning* block if they detect potential problems with the data, in order to warn you. Make sure you check those messages if you are having unexpected results. 17.6. Журнал 209 Рис. 17.29: Журнал 弩 # 17.7 Настройка сторонних приложений The processing framework can be extended using additional applications. Currently, SAGA, GRASS, OTB (Orfeo Toolbox) and R are supported, along with some other command-line applications that provide spatial data analysis functionalities. Algorithms relying on an external application are managed by their own algorithm provider. This section will show you how to configure the processing framework to include these additional applications, and it will explain some particular features of the algorithms based on them. Once you have correctly configured the system, you will be able to execute external algorithms from any component like the toolbox or the graphical modeler, just like you do with any other geoalgorithm. По умолчанию, все алгоритмы, зависящие от внешних приложений, которые не поставляются с QGIS, деактивированы. Вы можете активировать их в диалоге настройки платформы геообработки. Убедитесь, что соответствующее приложение уже установлено в системе. Активация провайдера алгоритмов без установки приложения, которое ему требуется, приведет к появлению алгоритмов в панели инструментов, но при попытке запуска алгоритма вы
получите ошибку. This is because the algorithm descriptions (needed to create the parameters dialog and provide the information needed about the algorithm) are not included with each application, but with QGIS instead. That is, they are part of QGIS, so you have them in your installation even if you have not installed any other software. Running the algorithm, however, needs the application binaries to be installed in your system. ### 17.7.1 Примечание для пользователей Windows If you are not an advanced user and you are running QGIS on Windows, you might not be interested in reading the rest of this chapter. Make sure you install QGIS in your system using the OSGeo4W application. That will automatically install SAGA, GRASS and OTB in your system and configure them so they can be run from QGIS. All the algorithms in the simplified view of the toolbox will be ready to be run without needing any further configuration. If you want to know more about how these providers work, or if you want to use some algorithms not included in the simplified toolbox (such as R scripts), keep on reading. ### 17.7.2 О форматах файлов When using an external software, opening a file in QGIS does not mean that it can be opened and processed as well in that other software. In most cases, other software can read what you have opened in QGIS, but in some cases, that might not be true. When using databases or uncommon file formats, whether for raster or vector layers, problems might arise. If that happens, try to use well-known file formats that you are sure are understood by both programs, and check the console output (in the history and log dialog) to know more about what is going wrong. Использование растровых данных GRASS является одним из случаев, когда у вас могут возникнуть проблемы, мешающие завершить анализ, если внешний алгоритм использует такой слой в качестве исходного. Поэтому такие слои не отображаются в качестве доступных для алгоритмов. You should, however, find no problems at all with vector layers, since QGIS automatically converts from the original file format to one accepted by the external application before passing the layer to it. This adds extra processing time, which might be significant if the layer has a large size, so do not be surprised if it takes more time to process a layer from a DB connection than it does to process one of a similar size stored in a shapefile. Провайдеры, не использующие внешние приложения, могут обрабатывать любые слои, открытые в QGIS, так как они открыты для анализа самой QGIS. Regarding output formats, all formats supported by QGIS as output can be used, both for raster and vector layers. Some providers do not support certain formats, but all can export to common raster layer formats that can later be transformed by QGIS automatically. As in the case of input layers, if this conversion is needed, that might increase the processing time. If the extension of the filename specified when calling an algorithm does not match the extension of any of the formats supported by QGIS, then a suffix will be added to set a default format. In the case of raster layers, the .tif extension is used, while .shp is used for vector layers. #### 17.7.3 О выделении в векторных слоях External applications may also be made aware of the selections that exist in vector layers within QGIS. However, that requires rewriting all input vector layers, just as if they were originally in a format not supported by the external application. Only when no selection exists, or the *Use only selected features* option is not enabled in the processing general configuration, can a layer be directly passed to an external application. Во всех остальных случаях необходим экспорт выбранных объектов, что увеличивает время обработки. #### **SAGA** Алгоритмы SAGA могут использоваться из QGIS, если SAGA установлена в системе, а платформа геообработки правильно настроена и может найти исполнимые файлы SAGA. Для запуска алгоритмов SAGA необходимы консольные приложения SAGA. If you are running Windows, both the stand-alone installer and the OSGeo4W installer include SAGA along with QGIS, and the path is automatically configured, so there is no need to do anything else. If you have installed SAGA yourself (remember, you need version 2.1), the path to the SAGA executable must be configured. To do this, open the configuration dialog. In the SAGA block, you will find a setting named SAGA Folder. Enter the path to the folder where SAGA is installed. Close the configuration dialog, and now you are ready to run SAGA algorithms from QGIS. If you are running Linux, SAGA binaries are not included with SEXTANTE, so you have to download and install the software yourself. Please check the SAGA website for more information. SAGA 2.1 is needed. In this case, there is no need to configure the path to the SAGA executable, and you will not see those folders. Instead, you must make sure that SAGA is properly installed and its folder is added to the PATH environment variable. Just open a console and type saga_cmd to check that the system can find where the SAGA binaries are located. ### 17.7.4 Ограничения системы покрытий SAGA Most SAGA algorithms that require several input raster layers require them to have the same grid system. That is, they must cover the same geographic area and have the same cell size, so their corresponding grids match. When calling SAGA algorithms from QGIS, you can use any layer, regardless of its cell size and extent. When multiple raster layers are used as input for a SAGA algorithm, QGIS resamples them to a common grid system and then passes them to SAGA (unless the SAGA algorithm can operate with layers from different grid systems). The definition of that common grid system is controlled by the user, and you will find several parameters in the SAGA group of the settings window to do so. There are two ways of setting the target grid system: - Setting it manually. You define the extent by setting the values of the following parameters: - Resampling min X - Resampling max X - Resampling min Y - Resampling max Y - Resampling cellsize Имейте ввиду, что QGIS выполнит пересчет исходных слоёв к этому охвату даже если они не пересекают его. • Setting it automatically from input layers. To select this option, just check the *Use min covering* grid system for resampling option. All the other settings will be ignored and the minimum extent that covers all the input layers will be used. The cell size of the target layer is the maximum of all cell sizes of the input layers. При вызове алгоритмов, которые не используют несколько исходных слоёв или не требуют единой системы покрытия, пересчет перед запуском SAGA не выполняется и все эти настройки ингорируются. #### 17.7.5 Ограничения многоканальных слоёв Unlike QGIS, SAGA has no support for multi-band layers. If you want to use a multiband layer (such as an RGB or multispectral image), you first have to split it into single-banded images. To do so, you can use the 'SAGA/Grid - Tools/Split RGB image' algorithm (which creates three images from an RGB image) or the 'SAGA/Grid - Tools/Extract band' algorithm (to extract a single band). ### 17.7.6 Limitations in cell size SAGA assumes that raster layers have the same cell size in the X and Y axis. If you are working with a layer with different values for horizontal and vertical cell size, you might get unexpected results. In this case, a warning will be added to the processing log, indicating that an input layer might not be suitable to be processed by SAGA. ### 17.7.7 Логгирование When QGIS calls SAGA, it does so using its command-line interface, thus passing a set of commands to perform all the required operations. SAGA shows its progress by writing information to the console, which includes the percentage of processing already done, along with additional content. This output is filtered and used to update the progress bar while the algorithm is running. Both the commands sent by QGIS and the additional information printed by SAGA can be logged along with other processing log messages, and you might find them useful to track in detail what is going on when QGIS runs a SAGA algorithm. You will find two settings, namely *Log console output* and *Log execution commands*, to activate that logging mechanism. Большинство провайдеров, использующих сторонние приложения и взаимодействующие с ними через командную строку, имеют схожие параметры, так что вы можете встретить их и в других местах диалога настройки. #### R. Creating R scripts R integration in QGIS is different from that of SAGA in that there is not a predefined set of algorithms you can run (except for a few examples). Instead, you should write your scripts and call R commands, much like you would do from R, and in a very similar manner to what we saw in the section dedicated to processing scripts. This section shows you the syntax to use to call those R commands from QGIS and how to use QGIS objects (layers, tables) in them. The first thing you have to do, as we saw in the case of SAGA, is to tell QGIS where your R binaries are located. You can do this using the *R folder* entry in the processing configuration dialog. Once you have set that parameter, you can start creating and executing your own R scripts. И снова, в Linux всё значительно проще: достаточно убедиться, что R доступен в РАТН. Если ыв можете запустить R просто введя в консоли R, значит всё в порядке. Чтобы добавить новый алгоритм, вызывающий функицю R (или более сложный скрипт R, который вы написали и хотите сделать доступным из QGIS), необходимо создать файл скрипта, объясняющий платформе геообработки как выполнить операцию и содержащий соответствующие команды R R script files have the extension .rsx, and creating them is pretty easy if you just have a basic knowledge of R syntax and R scripting. They should be stored in the R scripts folder. You can set this folder in the R settings group (available from the processing
settings dialog), just like you do with the folder for regular processing scripts. Let's have a look at a very simple script file, which calls the R method spsample to create a random grid within the boundary of the polygons in a given polygon layer. This method belongs to the maptools package. Since almost all the algorithms that you might like to incorporate into QGIS will use or generate spatial data, knowledge of spatial packages like maptools and, especially, sp, is mandatory. ``` ##polyg=vector ##numpoints=number 10 ##output=output vector ##sp=group pts=spsample(polyg,numpoints,type="random") output=SpatialPointsDataFrame(pts, as.data.frame(pts)) ``` The first lines, which start with a double Python comment sign (##), tell QGIS the inputs of the algorithm described in the file and the outputs that it will generate. They work with exactly the same syntax as the SEXTANTE scripts that we have already seen, so they will not be described here again. Check the processing scripts section for more information. When you declare an input parameter, QGIS uses that information for two things: creating the user interface to ask the user for the value of that parameter and creating a corresponding R variable that can later be used as input for R commands. In the above example, we are declaring an input of type vector named polyg. When executing the algorithm, QGIS will open in R the layer selected by the user and store it in a variable also named polyg. So, the name of a parameter is also the name of the variable that we can use in R for accessing the value of that parameter (thus, you should avoid using reserved R words as parameter names). Spatial elements such as vector and raster layers are read using the readOGR() and brick() commands (you do not have to worry about adding those commands to your description file – QGIS will do it), and they are stored as Spatial*DataFrame objects. Table fields are stored as strings containing the name of the selected field. Tables are opened using the read.csv() command. If a table entered by the user is not in CSV format, it will be converted prior to importing it into R. Additionally, raster files can be read using the readGDAL() command instead of brick() by using the ##usereadgdal. Если вы опытный пользователь и не хотите чтобы QGIS создавала объект, представляющий слой, используйте директиву ##passfilename. Эта директива указывает, что необходимо вернуть строку с именем файла. В этом случае, перед выполнением любых операций с файлом, вам необходимо позаботиться о его открытии. Теперь, используя вышеприведённые сведения, мы легко можем разобрать первую строку скрипта (первую строку без символа комментария в начале). ``` pts=spsample(polyg,numpoints,type="random") ``` Переменная polygon уже содержит объект SpatialPolygonsDataFrame и может использоваться для вызова метода spsample, как и переменная numpoints, которая содержит число точек для создания сетки. Since we have declared an output of type vector named out, we have to create a variable named out and store a Spatial*DataFrame object in it (in this case, a SpatialPointsDataFrame). You can use any name for your intermediate variables. Just make sure that the variable storing your final result has the same name that you used to declare it, and that it contains a suitable value. В нашем случае результат полученный от метода spsample необходимо явно преобразовать в объект SpatialPointsDataFrame, так как изначально это экземпляр класса ppp, который не подходит для возвращения в QGIS. If your algorithm generates raster layers, the way they are saved will depend on whether or not you have used the #dontuserasterpackage option. In you have used it, layers are saved using the writeGDAL() method. If not, the writeRaster() method from the raster package will be used. Если указана директива #passfilename, выходные растры будут созданы при помощи пакета raster (методом writeRaster()), даже если он не использовался для загрузки исходных данных. If your algorithm does not generate any layer, but rather a text result in the console instead, you have to indicate that you want the console to be shown once the execution is finished. To do so, just start the command lines that produce the results you want to print with the > ('greater') sign. The output of all other lines will not be shown. For instance, here is the description file of an algorithm that performs a normality test on a given field (column) of the attributes of a vector layer: ``` ##layer=vector ##field=field layer ##nortest=group library(nortest) >lillie.test(layer[[field]]) ``` The output of the last line is printed, but the output of the first is not (and neither are the outputs from other command lines added automatically by QGIS). Если алгоритм создаёт какие-либо графические объекты (используя метод plot()), добавьте следующую строку: #### ##showplots This will cause QGIS to redirect all R graphical outputs to a temporary file, which will be opened once R execution has finished. И консольные и графические результаты будут доступны в окне Просмотр результатов. For more information, please check the script files provided with SEXTANTE. Most of them are rather simple and will greatly help you understand how to create your own scripts. Примечание: rgdal and maptools libraries are loaded by default, so you do not have to add the corresponding library() commands (you just have to make sure that those two packages are installed in your R distribution). However, other additional libraries that you might need have to be explicitly loaded. Just add the necessary commands at the beginning of your script. You also have to make sure that the corresponding packages are installed in the R distribution used by QGIS. The processing framework will not take care of any package installation. If you run a script that requires a package that is not installed, the execution will fail, and SEXTANTE will try to detect which packages are missing. You must install those missing libraries manually before you can run the algorithm. #### **GRASS** Настройка GRASS мало чем отличается от настройки SAGA. Прежде всего необходимо указать путь к каталогу установки GRASS, но только в том случае, если вы использует Windows. Дополнительно требуется указать используемый интерпретатор командной строки (обычно это msys.exe, который имеется в большинстве дистрибутивов GRASS для Windows) и его расположение. By default, the processing framework tries to configure its GRASS connector to use the GRASS distribution that ships along with QGIS. This should work without problems in most systems, but if you experience problems, you might have to configure the GRASS connector manually. Also, if you want to use a different GRASS installation, you can change that setting and point to the folder where the other version is installed. GRASS 6.4 is needed for algorithms to work correctly. Если вы используете Linux, просто убедитесь, что GRASS корректно установлена и запускается из командной строки без ошибок. GRASS algorithms use a region for calculations. This region can be defined manually using values similar to the ones found in the SAGA configuration, or automatically, taking the minimum extent that covers all the input layers used to execute the algorithm each time. If the latter approach is the behaviour you prefer, just check the *Use min covering region* option in the GRASS configuration parameters. The last parameter that has to be configured is related to the mapset. A mapset is needed to run GRASS, and the processing framework creates a temporary one for each execution. You have to specify if the data you are working with uses geographical (lat/lon) coordinates or projected ones. ### **GDAL** No additional configuration is needed to run GDAL algorithms. Since they are already incorporated into QGIS, the algorithms can infer their configuration from it. #### Orfeo Toolbox Orfeo Toolbox (OTB) algorithms can be run from QGIS if you have OTB installed in your system and you have configured QGIS properly, so it can find all necessary files (command-line tools and libraries). As in the case of SAGA, OTB binaries are included in the stand-alone installer for Windows, but they are not included if you are runing Linux, so you have to download and install the software yourself. Please check the OTB website for more information. Once OTB is installed, start QGIS, open the processing configuration dialog and configure the OTB algorithm provider. In the *Orfeo Toolbox (image analysis)* block, you will find all settings related to OTB. First, ensure that algorithms are enabled. Then, configure the path to the folder where OTB command-line tools and libraries are installed: - Usually OTB applications folder points to /usr/lib/otb/applications and OTB command line tools folder is /usr/bin. - If you use the OSGeo4W installer, then install otb-bin package and enter C:\OSGeo4W\apps\orfeotoolbox\applications as OTB applications folder and C:\OSGeo4W\bin as OTB command line tools folder. These values should be configured by default, but if you have a different OTB installation, configure them to the corresponding values in your system. #### **TauDEM** To use this provider, you need to install TauDEM command line tools. ### 17.7.8 Windows Please visit the TauDEM homepage for installation instructions and precompiled binaries for 32-bit and 64-bit systems. **IMPORTANT**: You need TauDEM 5.0.6 executables. Version 5.2 is currently not supported. #### 17.7.9 Linux There are no packages for most Linux distributions, so you should compile TauDEM by yourself. As TauDEM uses MPICH2, first install it using your favorite package manager. Alternatively, TauDEM works fine with Open MPI, so you can use it instead of MPICH2. Download TauDEM 5.0.6 source code and extract the files in some folder. Open the linearpart.h file, and after line ``` #include "mpi.h" add a new line with #include <stdint.h> T.e. y Bac будет #include "mpi.h" #include <stdint.h>
``` Save the changes and close the file. Now open tiffIO.h, find line #include "stdint.h" and replace quotes () with <>, so you'll get ``` #include <stdint.h> ``` Save the changes and close the file. Create a build directory and cd into it ``` mkdir build cd build ``` Configure your build with the command ``` CXX=mpicxx cmake -DCMAKE_INSTALL_PREFIX=/usr/local .. ``` и запустите компиляцию make Finally, to install TauDEM into /usr/local/bin, run sudo make install . ### 17.8 The SEXTANTE Commander SEXTANTE includes a practical tool that allows you to run algorithms without having to use the toolbox, but just by typing the name of the algorithm you want to run. This tool is known as the SEXTANTE Commander, and it is just a simple text box with autocompletion where you type the command you want to run. Рис. 17.30: The SEXTANTE Commander 🤊 The Commander is started from the *Analysis* menu or, more practically, by pressing Shift + Ctrl + M (you can change that default keyboard shortcut in the QGIS configuration, if you prefer a different one). Apart from executing SEXTANTE algorithms, the Commander gives you access to most of the functionality in QGIS, which means that it gives you a practical and efficient way of running QGIS tasks and allows you to control QGIS with reduced usage of buttons and menus. Moreover, the Commander is configurable, so you can add your custom commands and have them just a few keystrokes away, making it a powerful tool to help you become more productive in your daily work with QGIS. ### 17.8.1 Доступные команды The commands available in the Commander fall in the following categories: - SEXTANTE algorithms. These are shown as SEXTANTE algorithm: <name of the algorithm>. - Menu items. These are shown as Menu item: <menu entry text>. All menus items available from the QGIS interface are available, even if they are included in a submenu. - Python functions. You can create short Python functions that will be then included in the list of available commands. They are shown as Function: <function name>. To run any of the above, just start typing and then select the corresponding element from the list of available commands that appears after filtering the whole list of commands with the text you have entered. В случае функции Python можно выбрать соответствующий элемент списка, начинающийся с Function: (например, Function: removeall), или же полностью ввести имя функции (removeall в предыдущем примере). Добавлять скобки после имени функции не требуется. ### 17.8.2 Создание пользовательских функций Пользовательские функции создаются путём добавления соответствующего кода Python в файл commands.py, который находится в каталоге .qgis2/processing/commander пользовательской директории. Это обычный файл Python, в который можно добавлять свои функции. The file is created with a few example functions the first time you open the Commander. If you haven't launched the Commander yet, you can create the file yourself. To edit the commands file, use your favorite text editor. You can also use a built-in editor by calling the edit command from the Commander. It will open the editor with the commands file, and you can edit it directly and then save your changes. Например, можно добавить такую функцию для удаления всех слоёв: ``` from qgis.gui import * def removeall(): mapreg = QgsMapLayerRegistry.instance() mapreg.removeAllMapLayers() ``` Once you have added the function, it will be available in the Commander, and you can invoke it by typing removeal1. There is no need to do anything apart from writing the function itself. Functions can receive parameters. Add *args to your function definition to receive arguments. When calling the function from the Commander, parameters have to be passed separated by spaces. Вот пример функции, загружающей слой. В качестве параметра ей передаётся имя файла, который необходимо открыть. ``` import sextante def load(*args): sextante.load(args[0]) ``` If you want to load the layer in /home/myuser/points.shp, type load /home/myuser/points.shp in the Commander text box. . # Компоновщик карты The Print Composer provides growing layout and printing capabilities. It allows you to add elements such as the QGIS map canvas, text labels, images, legends, scale bars, basic shapes, arrows, attribute tables and HTML frames. You can size, group, align and position each element and adjust the properties to create your layout. The layout can be printed or exported to image formats, PostScript, PDF or to SVG (export to SVG is not working properly with some recent Qt4 versions; you should try and check individually on your system). You can save the layout as a template and load it again in another session. Finally, generating several maps based on a template can be done through the atlas generator. See a list of tools in table composer 1: | Иконка | Описание | Иконка | Описание | |-----------------|--------------------------------------|----------|-------------------------------------| | | Save Project | | New Composer | | <b>□</b> * | Duplicate Composer | 3 | Composer Manager | | | Загрузить из шаблона | | Сохранить как шаблон | | | Print or export as PostScript | | Экспорт в изображение | | * | Экспорт в SVG | ٦ | Экспорт в PDF | | <b>5</b> | Отменить последнее изменение | | Вернуть отменённое действие | | | Полный охват | 1:1) | Zoom to 100% | | <b>Æ</b> | Увеличить | <b>#</b> | Уменьшить | | 2 | Refresh View | | | | $\sqrt{\omega}$ | Pan | | Zoom to specific region | | X | Выбрать/переместить элемент | | Переместить содержимое элемента | | | Add new map from QGIS map canvas | | Добавить изображение | | T | Добавить текст | E | Добавить легенду | | • | Add scale bar to print composition | | Добавить фигуру | | 1 | Добавить стрелку | | Добавить таблицу | | | Add an HTML frame | | | | | Сгруппировать<br>Lock Selected Items | • | Разгруппировать<br>Unlock All items | | | Поднять | | Опустить | | | На передний план | | На задний план | | | Выровнять по левым краям | | Выровнять по правым краям | | | Центрировать | | Центрировать по вертикали | | | Выровнять по верхним краям | | Выровнять по нижним краям | | | Preview Atlas | <b>!</b> | First Feature | | <b>+</b> | Previous Feature | - | Next Feature | | $\Rightarrow$ | Last feature | | Print Atlas | | | Export Atlas as Image | 2 | Atlas Settings | Таблица Composer 1: Инструменты Компоновщика карты All Print Composer tools are available in menus and as icons in a toolbar. The toolbar can be switched off and on using the right mouse button over the toolbar. # 18.1 First steps ### 18.1.1 Открытие новой компоновки Before you start to work with the Print Composer, you need to load some raster and vector layers in the QGIS map canvas and adapt their properties to suit your own convenience. After everything is rendered and symbolized to your liking, click the $\stackrel{\frown}{\bowtie}$ New Print Composer icon in the toolbar or choose $File \rightarrow New$ Print Composer. You will be prompted to choose a title for the new Composer. ### 18.1.2 Using Print Composer Opening the Print Composer provides you with a blank canvas to which you can add the current QGIS map canvas, text labels, images, legends, scale bars, basic shapes, arrows, attribute tables and HTML frames. Figure composer 1 shows the initial view of the Print Composer before any elements are added. Рис. 18.1: Print Composer 🚨 The Print Composer provides four tabs: - The Composition tab allows you to set paper size, orientation, the page background, number of pages and print quality for the output file in dpi. Furthermore, you can also activate the Print as raster checkbox. This means all elements will be rastered before printing or saving as PostScript or PDF. In this tab, you can also customize settings for grid and smart guides. - The *Item Properties* tab displays the properties for the selected item element. Click the Select/Move item icon to select an element (e.g., legend, scale bar or label) on the canvas. Then click the *Item Properties* tab and customize the settings for the selected element. - The Command history tab (hidden by default) displays a history of all changes applied to the Print Composer layout. With a mouse click, it is possible to undo and redo layout steps back and forth to a certain status. - The Atlas generation tab allows you to enable the generation of an atlas for the current Composer and gives access to its parameters. In the bottom part of the Print Composer window, you can find a status bar with mouse position, current page number and a combo box to set the zoom level. 18.1. First steps 221 You can add multiple elements to the Composer. It is also possible to have more than one map view or legend or scale bar in the Print Composer canvas, on one or several pages. Each element has its own properties and, in the case of the map, its own extent. If you want to remove any elements from the Composer canvas you can do that with the Delete or the Backspace key. #### Инструменты навигации To navigate in the canvas layout, the Print Composer provides some general tools: - увеличить - 💂 🔎 Уменьшить - Zoom to full extent - Zoom to 100% - С Обновить (если вы обнаружили, что изображение находится в несогласованном состоянии) - Pan composer - Marquee zoom mode (zoom to a specific region of the Composer) You can change the zoom level also using the mouse wheel or the combo box in the status bar. If you need to switch to pan mode while working in the Composer area, you can hold the Spacebar or the the mouse wheel. With Ctrl+Spacebar, you can temporarily switch to marquee zoom mode, and with Ctrl+Shift+Spacebar, to zoom out mode. ### 18.1.3 Print Composer Options From $Settings \rightarrow Composer\ Options$ you can set some options that will be used as default during your work. - Compositions defaults let you specify the default font to use. - With Grid appearance, you can set the grid style and its color. - Grid defaults defines spacing, offset and tolerance of the grid.
There are three types of grid: **Dots**, **Solid** lines and **Crosses**. - Guide defaults defines the tolerance for the guides. ### 18.1.4 Composition tab — General composition setup In the Composition tab, you can define the global settings of your composition. - You can choose one of the *Presets* for your paper sheet, or enter your custom width and height. - Composition can now be divided into several pages. For instance, a first page can show a map canvas, and a second page can show the attribute table associated with a layer, while a third one shows an HTML frame linking to your organization website. Set the *Number of pages* to the desired value. You can choose the page *Orientation* and its *Exported resolution*. When checked, print as raster means all elements will be rasterized before printing or saving as PostScript or PDF. - Grid lets you customize grid settings like spacings, offsets and tolerance to your need. - In *Snap to alignments*, you can change the *Tolerance*, which is the maximum distance below which an item is snapped to smart guides. Snap to grid and/or to smart guides can be enabled from the *View* menu. In this menu, you can also hide or show the grid and smart guides. ### 18.1.5 Composer items general options Composer items have a set of common properties you will find on the bottom of the *Item Properties* tab: Position and size, Frame, Background, Item ID and Rendering (See figure composer 2). Рис. 18.2: Common Item properties Dialogs 🚨 - The *Position and size* dialog lets you define size and position of the frame that contains the item. You can also choose which *Reference point* will be set at the **X** and **Y** coordinates previously defined. - The *Rotation* sets the rotation of the element (in degrees). - The Frame shows or hides the frame around the label. Click on the [Color] and [Thickness] buttons to adjust those properties. - The Background enables or disables a background color. Click on the [Color...] button to display a dialog where you can pick a color or choose from a custom setting. Transparency can also be adjusted throught the alpha field. - Use the *Item ID* to create a relationship to other Print Composer items. This is used with QGIS server and any potential web client. You can set an ID on an item (e.g., a map and a label), and then the web client can send data to set a property (e.g., label text) for that specific item. The GetProjectSettings command will list what items and which IDs are available in a layout. - Rendering mode can be selected in the option field. See Rendering_Mode. # 18.2 Rendering mode QGIS now allows advanced rendering for Composer items just like vector and raster layers. - Transparency: You can make the underlying item in the Composer visible with this tool. Use the slider to adapt the visibility of your item to your needs. You can also make a precise definition of the percentage of visibility in the the menu beside the slider. - Blending mode: You can achieve special rendering effects with these tools that you previously only may know from graphics programs. The pixels of your overlaying and underlaying items are mixed through the settings described below. Рис. 18.3: Rendering mode 🚨 - Normal: This is the standard blend mode, which uses the alpha channel of the top pixel to blend with the pixel beneath it; the colors aren't mixed. - Lighten: This selects the maximum of each component from the foreground and background pixels. Be aware that the results tend to be jagged and harsh. - Screen: Light pixels from the source are painted over the destination, while dark pixels are not. This mode is most useful for mixing the texture of one layer with another layer (e.g., you can use a hillshade to texture another layer). - Dodge: Dodge will brighten and saturate underlying pixels based on the lightness of the top pixel. So, brighter top pixels cause the saturation and brightness of the underlying pixels to increase. This works best if the top pixels aren't too bright; otherwise the effect is too extreme. - Addition: This blend mode simply adds pixel values of one layer with pixel values of the other. In case of values above 1 (as in the case of RGB), white is displayed. This mode is suitable for highlighting features. - Darken: This creates a resultant pixel that retains the smallest components of the foreground and background pixels. Like lighten, the results tend to be jagged and harsh. - Multiply: Here, the numbers for each pixel of the top layer are multiplied with the numbers for the corresponding pixel of the bottom layer. The results are darker pictures. - Burn: Darker colors in the top layer cause the underlying layers to darken. Burn can be used to tweak and colorise underlying layers. - Overlay: This mode combines the multiply and screen blending modes. In the resulting picture, light parts become lighter and dark parts become darker. - Soft light: This is very similar to overlay, but instead of using multiply/screen it uses color burn/dodge. This mode is supposed to emulate shining a soft light onto an image. - Hard light: Hard light is very similar to the overlay mode. It's supposed to emulate projecting a very intense light onto an image. - Difference: Difference subtracts the top pixel from the bottom pixel, or the other way around, to always get a positive value. Blending with black produces no change, as the difference with all colors is zero. - Subtract: This blend mode simply subtracts pixel values of one layer with pixel values of the other. In case of negative values, black is displayed. # 18.3 Composer Items ### 18.3.1 Adding a current QGIS map canvas to the Print Composer Click on the Add new map toolbar button in the Print Composer toolbar to add the QGIS map canvas. Now, drag a rectangle onto the Composer canvas with the left mouse button to add the map. To display the current map, you can choose between three different modes in the map *Item Properties* tab: • **Прямоугольник** является режимом по умолчанию. Отображается пустой прямоугольник с текстом «Место изображения карты». - Cache renders the map in the current screen resolution. If you zoom the Composer window in or out, the map is not rendered again but the image will be scaled. - Render means that if you zoom the Composer window in or out, the map will be rendered again, but for space reasons, only up to a maximum resolution. Cache is the default preview mode for newly added Print Composer maps. You can resize the map element by clicking on the Select/Move item button, selecting the element, and dragging one of the blue handles in the corner of the map. With the map selected, you can now adapt more properties in the map *Item Properties* tab. To move layers within the map element, select the map element, click the Move item content icon and move the layers within the map element frame with the left mouse button. After you have found the right place for an element, you can lock the element position within the Print Composer canvas. Select the map element and click on the right mouse button to Lock the element position and again to unlock the element. You can also lock the map element by activating the Lock layers for map item checkbox in the Map dialog of the Item Properties tab. ### Main properties The *Main properties* dialog of the map *Item Properies* tab provides the following functionalities (see figure_composer_4): Рис. 18.4: Map Item properties Tab 🚨 • The **Preview** area allows you to define the preview modes 'Rectangle', 'Cache' and 'Render', as described above. If you change the view on the QGIS map canvas by changing vector or raster properties, you can update the Print Composer view by selecting the map element in the Print Composer and clicking the **[Update preview]** button. - The field Scale 1,00 $\diamondsuit$ sets a manual scale. - The field *Rotation* 1,00 allows you to rotate the map element content clockwise in degrees. Note that a coordinate frame can only be added with the default value 0. - Zero Draw map canvas items lets you show annotations that may be placed on the map canvas in the main QGIS window. - You can choose to lock the layers shown on a map item. Check Lock layers for map item. After this is checked, any layer that would be displayed or hidden in the main QGIS window won't appear or be hidden in the map item of the Composer. But style and labels of a locked layer are still refreshed according to the main QGIS interface. #### **Extents** The Extents dialog of the map item tab provides the following functionalities (see figure composer 5): Рис. 18.5: Map Extents Dialog 🗘 • The **Map extent** area allows you to specify the map extent using Y and X min/max values or by clicking the [Set to map canvas extent] button. If you change the view on the QGIS map canvas by changing vector or raster properties, you can update the Print Composer view by selecting the map element in the Print Composer and clicking the **[Update preview]** button in the map *Item Properties* tab (see figure composer 2). ### Grid The Grid dialog of the map Item Properties tab provides the following functionalities (see Figure composer 6): - The Show grid checkbox allows you to overlay a grid onto the map element. As grid type, you can specify to use a solid line or cross. Symbology of the grid can be chosen. See section Rendering_Mode. Furthermore, you can define an interval in the X and Y directions, an X and Y offset, and the width used for the cross or line grid type. - You can choose to paint the frame with a zebra style. If not selected, the general frame option is used (see section Frame_dialog). Advanced rendering mode is also available for grids (see section Rendering mode). - The Draw coordinates checkbox allows you to add coordinates to the map frame. The annotation can be drawn inside or outside the map frame. The annotation direction can be defined as horizontal, vertical, horizontal and vertical, or boundary direction, for each border
individually. Units can be in meters or in degrees. Finally, you can define the grid color, the annotation font, the annotation distance from the map frame and the precision of the drawn coordinates. Рис. 18.6: Map Grid Dialog 🚨 #### Overview The *Overview* dialog of the map *Item Properties* tab provides the following functionalities (see Figure composer 7): Рис. 18.7: Map Overview Dialog 🚨 If the Composer has more than one map, you can choose to use a first map to show the extents of a second map. The *Overview* dialog of the map *Item Properties* tab allows you to customize the appearance of that feature. - The Overview frame combo list references the map item whose extents will be drawn on the present map item. - The Overview Style allows you to change the frame color. See section vector style manager . - The Overview Blend mode allows you to set different transparency blend modes, to enhance visibility of the frame. See Rendering Mode. - If checked, Invert overview creates a mask around the extents: the referenced map extents are shown clearly, whereas everything else is blended with the frame color. ### 18.3.2 Adding a Label item to the Print Composer To add a label, click the Add label icon, place the element with the left mouse button on the Print Composer canvas and position and customize its appearance in the label *Item Properties* tab. The Item Properties tab of a label item provides the following functionalities: Рис. 18.8: Label Item properties Tab 🛆 ### Main properties The *Main properties* dialog of the label *Item Properties* tab provides the following functionalities (see Figure composer 9): Рис. 18.9: Label Main properties Dialog 🕹 - The main properties dialog is where the text (HTML or not) or the expression needed to fill the label is added to the Composer canvas. - Labels can be interpreted as HTML code: check Render as HTML. You can now insert a URL, a clickable image that links to a web page or something more complex. - You can also insert an expression. Click on [Insert an expression] to open a new dialog. Build an expression by clicking the functions available in the left side of the panel. On the right side of the Insert an expression dialog, the help file associated with the function selected is displayed. Two special categories can be useful, particularly associated with the atlas functionality: geometry functions and records functions. At the bottom, a preview of the expression is shown. - Define font and font color by clicking on the [Font] and [Font color...] buttons. #### Alignment and Display The Alignment and Display dialogs of the label Item Properties tab provide the following functionalities (see Figure composer 10): Рис. 18.10: Label Alignment and Display Dialogs 🚨 - You can define the horizontal and vertical alignment in the Alignment zone. - In the **Display** tag, you can define a margin in mm and/or a rotation angle in degrees for the text. ### 18.3.3 Adding an Image item to the Print Composer To add an image, click the Add image icon, place the element with the left mouse button on the Print Composer canvas and position and customize its appearance in the image *Item Properties* tab. The image *Item Properties* tab provides the following functionalities (see figure_composer_11): Рис. 18.11: Image Item properties Tab 🚨 #### Main properties, Search directories and Rotation The *Main properties* and *Search directories* dialogs of the image *Item Properties* tab provide the following functionalities (see Figure composer 12): - The Main properties dialog shows the current image that is displayed in the image item. Click on the [...] button to select a file on your computer. - This dialog shows all pictures stored in the selected directories. - The **Search directories** area allows you to add and remove directories with images in SVG format to the picture database. - Images can be rotated with the *Rotation* 1,00 \$ field. - Activating the Sync with map checkbox synchronizes the rotation of a picture in the QGIS map canvas (i.e., a rotated north arrow) with the appropriate Print Composer image. Рис. 18.12: Image Main properties, Search directories and Rotation Dialogs 🚨 ### 18.3.4 Adding a Legend item to the Print Composer To add a map legend, click the Ladd new legend icon, place the element with the left mouse button on the Print Composer canvas and position and customize the appearance in the legend Item Properties tab. The *Item properties* of a legend item tab provides the following functionalities (see figure composer 14): Рис. 18.13: Legend Item properties Tab 🚨 #### Main properties The Main properties dialog of the legend Item Properties tab provides the following functionalities (see figure composer 14): Рис. 18.14: Legend Main properties Dialog 🚨 - Here, you can adapt the legend title. - You can also choose which Map item the current legend will refer to in the select list. - Since QGIS 1.8, you can wrap the text of the legend title on a given character. #### Legend items The Legend items dialog of the legend Item Properties tab provides the following functionalities (see figure composer 15): Рис. 18.15: Legend Legend Items Dialog 🚨 - The legend items window lists all legend items and allows you to change item order, group layers, remove and restore items in the list, and edit layer names. After changing the symbology in the QGIS main window, you can click on [Update] to adapt the changes in the legend element of the Print Composer. The item order can be changed using the [Up] and [Down] buttons or with 'drag-and-drop' functionality. - The feature count for each vector layer can be shown by enabling the [Sigma] button. - The legend will be updated automatically if $\square$ Auto-update is checked. ### Fonts, Columns, Symbol and Spacing The Fonts, Columns, Symbol and Spacing dialogs of the legend Item Properties tab provide the following functionalities (see figure composer 16): Рис. 18.16: Legend Fonts, Columns, Symbol and Spacing Dialogs 🚨 - You can change the font of the legend title, group, subgroup and item (layer) in the legend item. Click on a category button to open a **Select font** dialog. - All these items will get the same Color. - Legend items can be arranged in several columns. Select the correct value in the *Count* field. - **Z** Equal column widths sets how legend columns should be adjusted. - The Split layers option allows a categorized or a graduated layer legend to be divided between columns. - You can change the width and height of the legend symbol in this dialog. - Spacing aroung title, group, subgroup, symbol, icon label, box space or column space can be customized through this dialog. ### 18.3.5 Adding a Scale Bar item to the Print Composer To add a scale bar, click the Add new scalebar icon, place the element with the left mouse button on the Print Composer canvas and position and customize the appearance in the scale bar *Item Properties* tab. The *Item properties* of a scale bar item tab provides the following functionalities (see figure composer 17): Рис. 18.17: Scale Bar Item properties Tab 🚨 ### Main properties The *Main properties* dialog of the scale bar *Item Properties* tab provides the following functionalities (see figure composer 18): Рис. 18.18: Scale Bar Main properties Dialog 🚨 • First, choose the map the scale bar will be attached to. - Then, choose the style of the scale bar. Six styles are available: - Single box and Double box styles, which contain one or two lines of boxes alternating colors. - Middle, Up or Down line ticks. - Numeric, where the scale ratio is printed (i.e., 1:50000). #### **Units and Segments** The *Units* and *Segments* dialogs of the scale bar *Item Properties* tab provide the following functionalities (see figure composer 19): Рис. 18.19: Scale Bar Units and Segments Dialogs 🕰 In these two dialogs, you can set how the scale bar will be represented. - Select the map units used. There are three possible choices: Map Units is the automated unit selection; **Meters** or **Feet** force unit conversions. - The Label field defines the text used to describe the units of the scale bar. - The Map units per bar unit allows you to fix the ratio between a map unit and its representation in the scale bar. - You can define how many Segments will be drawn on the left and on the right side of the scale bar, and how long each segment will be (Size field). Height can also be defined. #### Display, Fonts and colors The Display and Fonts and colors dialogs of the scale bar Item Properties tab provide the following functionalities (see figure composer 20): - You can define how the scale bar will be displayed in its frame. Adjust the Box margin between text and frame borders, Labels margin between text and scale bar drawing and the Line width of the scale bar drawing. - The Alignment in the Display dialog only applies to Numeric styled scale bars and puts text on the left, middle or right side of the frame. ### 18.3.6 Adding a Basic shape or Arrow item to the Print Composer It is possible to add basic shapes (ellipse, rectangle, triangle) and arrows to the Print Composer canvas: Click the Add basic shape icon or the Add Arrow icon, place the element with the left mouse button on the Print Composer canvas and position and customize the appearance in the Item Properties tab. Рис. 18.20: Scale Bar Display, Fonts and colors Dialogs 🚨 The Shape item properties tab allows you to draw an ellipse, rectangle, or triangle in the Print Composer canvas. You can define its outline and fill color, the outline width and a clockwise rotation. For the rectangle shape, you can change the value of the corner radius. Рис. 18.21: Shape Item properties Tab 🕰 The Arrow item properties tab allows you to draw an arrow in the Print Composer canvas. You can define color, outline and arrow width, and it is possible to use a default marker, no marker, or an SVG marker. For the SVG marker, you can additionally add an SVG start and end marker from
a directory on your computer. ### Main properties - For basic shapes, this dialog allows you to choose an Ellipse, Rectangle or Triangle shape and its rotation. - Unlike the other items, line style, line color and background color of a basic shape are adjusted with the Frame and Background dialog. No frame is drawn. - For arrows, you can define here the line style: Color, Line width and Arrow head width. Рис. 18.22: Arrow Item properties Tab 🚨 • Arrows markers can be adjusted. If you want to set an SVG Start marker and/or End marker, browse to your SVG file by clicking on the [...] button after selecting the SVG radio button. $\Pi$ римечание: Unlike other items, the background color for a basic shape is the shape background and not the frame background. ## 18.3.7 Add attribute table values to the Print Composer It is possible to add parts of a vector attribute table to the Print Composer canvas: Click the Add attribute table icon, place the element with the left mouse button on the Print Composer canvas, and position and customize the appearance in the *Item Properties* tab. The *Item properties* of an attribute table item tab provides the following functionalities (see figure_composer_23): Рис. 18.23: Scale Bar Item properties Tab 🚨 ### Main properties, Show grid and Fonts The *Main properties*, *Show grid* and *Fonts* dialogs of the attribute table *Item Properties* tab provide the following functionalities (see figure composer 24): Рис. 18.24: Attribute table Main properties, Show grid and Fonts Dialog 🗴 Рис. 18.25: Attribute table Select attributes Dialog 🗴 - The *Table* dialog allows you to select the vector layer and columns of the attribute table. Attribute columns can be sorted, and you can specify whether to show values in ascending or descending order (see figure_composer_25). - You can choose to display the attributes of only features visible on a map. Check Show only visible features and select the corresponding Composer map to filter. - You can define the Maximum number of rows to be displayed and the margin around text. - Additionally, you can define the grid characteristics of the table (Stroke width and Color of the grid) and the header and content font. ### 18.3.8 Add an HTML frame to the Print Composer It is possible to add a clickable frame linked to a URL: Click the Add HTML frame icon, place the element with the left mouse button on the Print Composer canvas and position and customize the appearance in the *Item Properties* tab. ### Main properties The *Main properties* dialog of the HTML frame *Item Properties* tab provides the following functionalities (see figure composer 26): Рис. 18.26: HTML frame Item properties Tab 🚨 - Point the *URL* field to the *URL* or the *HTML* file you want to insert in the Composer. - You can adjust the rendering of the page with the Resize mode. - Use existing frames constrains the page inside its first frame or in the frame created with the next settings. - Extent to next page will create as many frames (and corresponding pages) as necessary to render the height of the web page. Each frame can be moved around on the layout. If you resize a frame, the webpage will be divided up between the other frames. The last frame will be trimmed to fit the web page. - Repeat on every page will repeat the upper left of the web page on every page in frames of the same size. - Repeat until finished will also create as many frames as the Extend to next page option, except all frames will have the same size. # 18.4 Manage items ### 18.4.1 Size and position Each item inside the Composer can be moved/resized to create a perfect layout. For both operations the first step is to activate the Select/Move item tool and to click on the item; you can then move it using the mouse while holding the left button. If you need to constrain the movements to the horizontal or the vertical axis, just hold the Shift while moving the mouse. If you need a better precision, you can move a selected item using the Arrow keys on the keyboard; if the movement is too slow, you can speed up it by holding Shift. A selected item will show squares on its boundaries; moving one of them with the mouse, will resize the item in the corresponding direction. While resizing, holding Shift will maintain the aspect ratio. Holding Ctrl will resize from the item center. The correct position for an item can be obtained using snapping to grid or smart guides. If you need to disable the snap on the fly just hold Ctrl while moving the mouse. You can choose multiple items with the Select/Move item button. Just hold the Shift button and click on all the items you need. You can then resize/move this group just like a single item. Once you have found the correct position for an item, you can lock it by clicking with the right mouse button. Press the same button another time to unlock it. You can also lock/unlock items using the icons on the toolbar. To unselect an item, just click on it holding the Shift button. Inside the Edit menu, you can find actions to select all the items, to clear all selections or to invert the current selection. ### 18.4.2 Alignment Raising or lowering functionalities for elements are inside the Raise selected items pull-down menu. Choose an element on the Print Composer canvas and select the matching functionality to raise or lower the selected element compared to the other elements (see table_composer_1). There are several alignment functionalities available within the Align selected items pull-down menu (see table_composer_1). To use an alignment functionality, you first select some elements and then click on the matching alignment icon. All selected elements will then be aligned within to their common bounding box. When moving items on the Composer canvas, alignment helper lines appear when borders, centers or corners are aligned. ### 18.4.3 Copy/Cut and Paste items The print composer includes actions to use the common Copy/Cut/Paste functionality for the items in the layout. As usual first you need to select the items using one of the options seen above; at this point the actions can be found in the Edit menu. When using the Paste action, the elements will be pasted according to the current mouse position. # 18.5 Инструменты отмены и возврата During the layout process, it is possible to revert and restore changes. This can be done with the revert and restore tools: • Отменить последнее изменение Рис. 18.27: Alignment helper lines in the Print Composer 🚨 🧸 🗬 Вернуть отменённое действие This can also be done by mouse click within the Command history tab (see figure_composer_28). Рис. 18.28: Command history in the Print Composer 🚨 # 18.6 Atlas generation The Print Composer includes generation functions that allow you to create map books in an automated way. The concept is to use a coverage layer, which contains geometries and fields. For each geometry in the coverage layer, a new output will be generated where the content of some canvas maps will be moved to highlight the current geometry. Fields associated with this geometry can be used within text labels. Every page will be generated with each feature. To enable the generation of an atlas and access generation parameters, refer to the Atlas generation tab. This tab contains the following widgets (see Figure composer 29): Рис. 18.29: Atlas generation tab 🚨 - Generate an atlas, which enables or disables the atlas generation. - A Coverage layer combo box that allows you to choose the (vector) layer containing the geometries on which to iterate over. - An optional *Hidden coverage layer* that, if checked, will hide the coverage layer (but not the other ones) during the generation. - An optional *Filter with* text area that allows you to specify an expression for filtering features from the coverage layer. If the expression is not empty, only features that evaluate to **True** will be selected. The button on the right allows you to display the expression builder. - An Output filename expression textbox that is used to generate a filename for each geometry if needed. It is based on expressions. This field is meaningful only for rendering to multiple files. - A Single file export when possible that allows you to force the generation of a single file if this is possible with the chosen output format (PDF, for instance). If this field is checked, the value of the Output filename expression field is meaningless. - An optional Sort by that, if checked, allows you to sort features of the coverage layer. The associated combo box allows you to choose which column will be used as the sorting key. Sort order (either ascending or descending) is set by a two-state button that displays an up or a down arrow. You can use multiple map items with the atlas generation; each map will be rendered according to the coverage features. To enable atlas generation for a specific map item, you need to check $\[multiple$ Controlled by Atlas under the item properties of the map item. Once checked, you can set: - An input box *Margin around feature* that allows you to select the amount of space added around each geometry within the allocated map. Its value is meaningful only when using the auto-scaling mode. - A Fixed scale that allows you to toggle between auto-scale and fixed-scale mode. In fixed-scale mode, the map will only be translated for each geometry to be centered. In auto-scale mode, the map's extents are computed in such a way that each geometry will appear in its entirety. ### 18.6.1 Labels In order to adapt labels to the feature the atlas plugin iterates over, use a label with this special notation [%expression using field_name%]. For example, for a city layer with fields CITY_NAME and ZIPCODE, you could insert this: "[% 'The area of ' || upper(CITY_NAME) || ',' || ZIPCODE || ' is 'format_number(\$area/1000000,2) || ' km2' %|" That would result in the generated atlas as "The area of PARIS, 75001 is 1.94 km2". ### 18.6.2 Preview Once the atlas settings have been
configured and map items selected, you can create a preview of all the pages by clicking on $Atlas \rightarrow Preview \ Atlas$ and using the arrows, in the same menu, to navigate through all the features. ### 18.6.3 Generation The atlas generation can be done in different ways. For example, with $Atlas \to Print\ Atlas$ , you can directly print it. You can also create a PDF using $Atlas \to Export\ Atlas$ as PDF: The user will be asked for a directory for saving all the generated PDF files (except if the $Single\ file\ export\ when\ possible$ has been selected). If you need to print just a page of the atlas, simply start the preview function, select the page you need and click on $Composer \rightarrow Print$ (or create a PDF). ## 18.7 Создание вывода Figure_composer_30 shows the Print Composer with an example print layout, including each type of map element described in the sections above. Рис. 18.30: Print Composer with map view, legend, image, scale bar, coordinates, text and HTML frame added $\Delta$ The Print Composer allows you to create several output formats, and it is possible to define the resolution (print quality) and paper size: - The Print icon allows you to print the layout to a connected printer or a PostScript file, depending on installed printer drivers. - The Export as image icon exports the Composer canvas in several image formats, such as PNG, BPM, TIF, JPG,... - Export as PDF saves the defined Print Composer canvas directly as a PDF. - The Export as SVG icon saves the Print Composer canvas as an SVG (Scalable Vector Graphic). If you need to export your layout as a **georeferenced image** (i.e., to load back inside QGIS), you need to enable this feature under the Composition tab. Check **World file on** and choose the map item to use. With this option, the 'Export as image' action will create also a world file. Примечание: Currently, the SVG output is very basic. This is not a QGIS problem, but a problem with the underlying Qt library. This will hopefully be sorted out in future versions. Exporting big rasters can sometimes fail, even if there seems to be enough memory. This is also a problem with the underlying Qt management of rasters. # 18.8 Manage the Composer With the Save as template and Load from template icons, you can save the current state of a Print Composer session as a .qpt template and load the template again in another session. The Composer Manager button in the QGIS toolbar and in $Composer \rightarrow Composer Manager$ allows you to add a new Composer template, create a new composition based on a previously saved template or to manage already existing templates. Рис. 18.31: The Print Composer Manager 🔕 By default, the Composer manager searches for user templates in ~/.qgis2/composer template. The New Composer and Duplicate Composer buttons in the QGIS toolbar and in Composer o New Composer and Composer o Duplicate Composer allow you to open a new Composer dialog, or to duplicate an existing composition from a previously created one. Finally, you can save your print composition with the Save Project button. This is the same feature as in the QGIS main window. All changes will be saved in a QGIS project file. . # Модули QGIS ## 19.1 Модули QGIS QGIS has been designed with a plugin architecture. This allows many new features and functions to be easily added to the application. Many of the features in QGIS are actually implemented as plugins. ### 19.1.1 The Plugins Menus The menus in the Plugins dialog allow the user to install, uninstall and upgrade plugins in different ways. Here, all the available plugins are listed, including both core and external plugins. Use [Upgrade all] to look for new versions of the plugins. Furthermore, you can use [Install plugin], if a plugin is listed but not installed, and [Uninstall plugin] as well as [Reinstall plugin], if a plugin is installed. If a plugin is installed, it can be de/activated using the checkbox. Installed In this menu, you can find only the installed plugins. The external plugins can be uninstalled and reinstalled using the [Uninstall plugin] and [Reinstall plugin] buttons. You can [Upgrade all] here as well. Not installed This menu lists all plugins available that are not installed. You can use the [Install plugin] button to implement a plugin into QGIS. *** Upgradeable If you activated Show also experimental plugins in the Settings menu, you can use this menu to look for more recent plugin versions. This can be done with the [Upgrade plugin] or [Upgrade all] buttons. Settings In this menu, you can use the following options: • Merck for updates on startup. Whenever a new plugin or a plugin update is available, QGIS will inform you 'every time QGIS starts', 'once a day', 'every 3 days', 'every week', 'every 2 weeks' or 'every month'. Рис. 19.1: The 🍣 *All* menu 🕹 Рис. 19.2: The Installed menu 🛆 Рис. 19.3: The Puc. 19.3: The Not installed menu 🕹 Рис. 19.4: The 📂 Upgradeable menu 🛆 19.1. Модули QGIS 247 - Show also experimental plugins. QGIS will show you plugins in early stages of development, which are generally unsuitable for production use. - Show also deprecated plugins. These plugins are deprecated and generally unsuitable for production use. To add external author repositories, click [Add...] in the *Plugin repositories* section. If you do not want one or more of the added repositories, they can be disabled via the [Edit...] button, or completely removed with the [Delete] button. Рис. 19.5: The 🥰 Settings menu 🛆 The Search function is available in nearly every menu (except Settings). Here, you can look for specific plugins. #### Cobet: Core and external plugins QGIS plugins are implemented either as **Core Plugins** or **External Plugins**. **Core Plugins** are maintained by the QGIS Development Team and are automatically part of every QGIS distribution. They are written in one of two languages: C++ or Python. **External Plugins** are currently all written in Python. They are stored in external repositories and are maintained by the individual authors. Detailed documentation about the usage, minimum QGIS version, home page, authors, and other important information are provided for the 'Official' QGIS Repository at <a href="http://plugins.qgis.org/plugins/">http://plugins.qgis.org/plugins/</a>. For other external repositories, documentation might be available with the external plugins themselves. In general, it is not included in this manual. 19.1. Модули QGIS 249 # 19.2 Использование модулей ядра QGIS | Икон | - Модуль | Описание | Раздел | |--------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------| | ка | | | | | * | Захват координат | Захват кординат курсора в различных системах координат | Модуль<br>«Захват<br>координат» | | | DB Manager | Управление базами данных в QGIS | Модуль «DB<br>Manager» | | Č | Преобразователь<br>DXF2Shape | Преобразователь файлов из формата DXF в<br>формат SHP | Модуль «Преоб-<br>разователь<br>Dxf2Shp» | | <b>₩</b> | eVis | Инструмент визуализации событий | Модуль eVis | | | Инструменты GPS | Набор инструментов для анализа, в том числе геометрического, обработки геоданных и исследований | Модуль fTools | | | Инструменты GPS | Инструменты для загрузки и импорта данных<br>GPS | Модуль GPS | | | GRASS | Активация панели инструментов GRASS | Интеграция с<br>GRASS GIS | | • | Инструменты<br>GDAL | Растровые инструменты: упрощенный графический интерфейс для обычно используемых программ | Модуль GDAL<br>Tools | | # | Привязка растров<br>GDAL | Georeference rasters with GDAL | Модуль<br>привязки<br>растров | | 6 | Теплокарта | Create heatmap rasters from input vector points | Модуль<br>«Теплокарта» | | | Модуль<br>интерполяции | Интерполяция по вершинам в векторном слое | Модуль<br>интерполяции | | | Оффлайновое<br>редактирование | Оффлайновое редактирование слоёв и<br>синхронизация с базами данных | Оффлайновое<br>редактирование | | <b>e</b> * [ | Доступ к данным<br>Oracle Spatial<br>GeoRaster | Доступ к данным Oracle Spatial GeoRaster | Oracle Spatial<br>GeoRaster<br>Plugin | | | Менеджер модулей | Управление расширениями ядра и сторонними<br>расширениями | The Plugins<br>Menus | | | Морфометриче-<br>ский<br>анализ | Расчет наклона, аспекта, неровностей и общего искривления с использованием цифровых моделей рельефа | Морфометриче-<br>ский<br>анализ | | | Road Graph plugin | Поиск кратчайшего маршрута на графе дорог | Модуль «Road<br>Graph» | | 70 | Модуль SQL<br>Anywhere | Работа с векторными данными в БД SQL<br>Anywhere | Модуль «SQL<br>Anywhere» | | \ <b>\</b> | Пространственные<br>запросы | Модуль пространственных запросов для<br>векторных слоёв | Пространствен-<br>ные<br>запросы | | | SPIT | ${\bf Shape file\ to\ Postgre SQL/PostGIS\ Import\ Tool}$ | Модуль SPIT | | 250 | | Глава | 19. Модули QGIS | | Σ | Зональная<br>статистика | Расчет зональной статистики для полигонов | Зональная<br>статистика | . # 19.3 Модуль «Захват координат» The coordinate capture plugin is easy to use and provides the ability to display coordinates on the map canvas for two selected coordinate reference systems (CRS). Рис. 19.6: Модуль «Захват координат» 🚨 - 1. Start QGIS, select Project Properties from the Settings (KDE, Windows) or File (Gnome, OSX) menu and click on the Projection tab. As an alternative, you can also click on the CRS status icon in the lower right-hand corner of the status bar. - 2. Отметьте пункт *Включить преобразование координат «на лету»* и выберите нужную систему координат проекта (см. также раздел *Работа с проекциями*). - 3. Load the coordinate capture plugin in the Plugin Manager (see load_core_plugin) and ensure that the dialog is visible by going to View → Panels and ensuring that Coordinate Capture is enabled. The coordinate capture dialog appears as shown in Figure figure_coordinate_capture_1. Alternatively, you can also go to Vector
→ Coordinate Capture and see if Coordinate Capture is enabled. - 4. Щелкните по кнопке ^{Щелкните} для выбора системы координат, используемой для вывода и выберите в диалоговом окне требуемую систему координат. - 5. Для запуска захвата координат щелкните по кнопке **[Начать захват]**. Теперь вы можете щелкнуть в любом месте поля карты, и в модуле отобразятся координаты выбранного места в требуемой системе координат. - 6. To enable mouse coordinate tracking, click the ** mouse tracking icon. - 7. Также имеется возможность скопировать выбранные координаты в буфер обмена. 19.4 Модуль «DB Manager» The DB Manager Plugin is officially part of the QGIS core and is intended to replace the SPIT Plugin and, additionally, to integrate all other database formats supported by QGIS in one user interface. The DB Manager Plugin provides several features. You can drag layers from the QGIS Browser into the DB Manager, and it will import your layer into your spatial database. You can drag and drop tables between spatial databases and they will get imported. You can also use the DB Manager to execute SQL queries against your spatial database and then view the spatial output for queries by adding the results to QGIS as a query layer. The *Database* menu allows you to connect to an existing database, to start the SQL window and to exit the DB Manager Plugin. Once you are connected to an existing database, the menus *Schema* and *Table* additionally appear. Рис. 19.7: Модуль «DB Manager» 🚨 The Schema menu includes tools to create and delete (empty) schemas and, if topology is available (e.g., PostGIS 2), to start a TopoViewer. The Table menu allows you to create and edit tables and to delete tables and views. It is also possible to empty tables and to move tables from one schema to another. As further functionality, you can perform a VACUUM and then an ANALYZE for each selected table. Plain VACUUM simply reclaims space and makes it available for reuse. ANALYZE updates statistics to determine the most efficient way to execute a query. Finally, you can import layers/files, if they are loaded in QGIS or exist in the file system. And you can export database tables to shape with the Export File feature. The Tree window lists all existing databases supported by QGIS. With a double-click, you can connect to the database. With the right mouse button, you can rename and delete existing schemas and tables. Tables can also be added to the QGIS canvas with the context menu. If connected to a database, the main window of the DB Manager offers three tabs. The Info tab provides information about the table and its geometry, as well as about existing fields, constraints and indexes. It also allows you to run Vacuum Analyze and to create a spatial index on a selected table, if not already done. The Table tab shows all attributes, and the Preview tab renders the geometries as preview. # 19.5 Модуль «Преобразователь Dxf2Shp» The dxf2shape converter plugin can be used to convert vector data from DXF to shapefile format. It requires the following parameters to be specified before running: - Input DXF file: Enter the path to the DXF file to be converted. - Output Shp file: Enter desired name of the shapefile to be created. - Output file type: Specify the geometry type of the output shapefile. Currently supported types are polyline, polygon, and point. Глава 19. Модули QGIS Рис. 19.8: Модуль «Преобразователь Dxf2Shp» • Export text labels: When this checkbox is enabled, an additional shapefile point layer will be created, and the associated DBF table will contain information about the "TEXT" fields found in the DXF file, and the text strings themselves. #### 19.5.1 Использование модуля - 1. Start QGIS, load the Dxf2Shape plugin in the Plugin Manager (see *The Plugins Menus*) and click on the Dxf2Shape Converter icon, which appears in the QGIS toolbar menu. The Dxf2Shape plugin dialog appears, as shown in Figure_dxf2shape_1. - 2. Enter the input DXF file, a name for the output shapefile and the shapefile type. - 3. Активируйте *Укспорт текстовых меток*, если вам требуется создать дополнительный слой, содержащий надписи. - 4. Нажмите кнопку [ОК]. # 19.6 Модуль eVis (This section is derived from Horning, N., K. Koy, P. Ersts. 2009. eVis (v1.1.0) User's Guide. American Museum of Natural History, Center for Biodiversity and Conservation. Available from http://biodiversityinformatics.amnh.org/, and released under the GNU FDL.) The Biodiversity Informatics Facility at the American Museum of Natural History's (AMNH) Center for Biodiversity and Conservation (CBC) has developed the Event Visualization Tool (eVis), another software tool to add to the suite of conservation monitoring and decision support tools for guiding protected area and landscape planning. This plugin enables users to easily link geocoded (i.e., referenced with latitude and longitude or X and Y coordinates) photographs, and other supporting documents, to vector data in QGIS. eVis is now automatically installed and enabled in new versions of QGIS, and as with all plugins, it can be disabled and enabled using the Plugin Manager (see *The Plugins Menus*). В состав eVis входит три модуля: инструмент подключения к базе данных, инструмент определения событий и обозреватель событий. Все эти модули работают совместно, позволяя просматривать геокодированные фотографии и прочие документы, связанные с объектами, хранящимися в векторных файлах, базах данных и таблицах. 19.6. Модуль eVis 253 #### 19.6.1 Обозреватель событий Модуль «Обозреватель событий» предназначен для отображения геокодированных фотографий, ссылающихся на векторные объекты карты, открытой в QGIS. Например, на точечные данные, загруженные в проект из векторного файла или в результате запроса к базе данных. Такие векторные объекты должны содержать атрибутивную информацию, описывающую местоположение, имя файла фотографии и (не обязательно) направление компаса камеры в момент съёмки. Векторный слой должен быть загружен в QGIS до запуска модуля «Обозреватель событий». #### Запуск модуля «Обозреватель событий» To launch the Event Browser module, click on $Database \rightarrow eVis \rightarrow eVis \ Event \ Browser$ . This will open the $Generic\ Event\ Browser$ window. Окно Обозреватель событий состоит из трёх вкладок, расположенных сверху. Вкладка Вывод используется для просмотра фотографий и связанной с ними атрибутивной информации. Вкладка Параметры содержит набор настроек, позволяющих управлять поведением расширения eVis. И, наконец, вкладка Внешние приложения используется для сопоставления расширений файлов, отличных от изображений, и приложений, используемых в eVis для их отображения. #### Назначение окна «Вывод» To see the *Display* window, click on the *Display* tab in the *Event Browser* window. The *Display* window is used to view geocoded photographs and their associated attribute data. Рис. 19.9: Окно «Вывод» расширения eVis 1. Область вывода изображения: Область отображения фотографий. - 2. **Кнопка «Увеличить»**: Увеличьте фотографию для просмотра мелких деталей. Если изображение полностью не помещается в окно просмотра, воспользуйтесь полосами прокрутки, расположенными с левой и с нижней стороны окна и позволяющими перемещаться по изображению. - 3. **Кнопка «Уменьшить»**: Уменьшите фотографию для просмотра больших территорий. - 4. Увеличить до полного охвата: Отобразить полный охват фотографии. - 5. Attribute information window: All of the attribute information for the point associated with the photograph being viewed is displayed here. If the file type being referenced in the displayed record is not an image but is of a file type defined in the *Configure External Applications* tab, then when you double-click on the value of the field containing the path to the file, the application to open the file will be launched to view or hear the contents of the file. If the file extension is recognized, the attribute data will be displayed in green. - 6. **Навигационные кнопки**: Если выделено более одного объекта, то используйте кнопки [Предыдущее] и [Следующее] для перехода между ними. #### Назначение окна «Параметры» Рис. 19.10: Окно «Параметры» расширения eVis - 1. **File path**: A drop-down list to specify the attribute field that contains the directory path or URL for the photographs or other documents being displayed. If the location is a relative path, then the checkbox must be clicked. The base path for a relative path can be entered in the *Base Path* text box below. Information about the different options for specifying the file location are noted in the section *Определение местоположения и названия фотографий* below. - 2. Compass bearing: A drop-down list to specify the attribute field that contains the compass 19.6. Модуль eVis 255 bearing associated with the photograph being displayed. If compass bearing information is available, it is necessary to click the checkbox below the drop-down menu title. - 3. Compass offset: Compass offsets can be used to compensate for declination (to adjust bearings collected using magnetic bearings to true north bearings). Click the Manual radio button to enter the offset in the text box or click the From Attribute radio button to select the attribute field containing the offsets. For both of these options, east declinations should be entered using positive values, and west declinations should use negative values. - 4. **Базовый путь**: Базовый путь, относительно которого определяются относительные пути, определённые, как показано на рисунке Figure eVis 2 (A). - 5. **Replace path**: If this checkbox is checked, only the file name from A will be appended to the base path. - 6. **Apply rule to all documents**: If checked, the same path rules that are defined for photographs will be used for non-image documents such as movies, text documents, and sound files. If not checked, the path rules will only apply to photographs, and other documents will ignore the base path parameter. - 7. Remember
settings: If the checkbox is checked, the values for the associated parameters will be saved for the next session when the window is closed or when the [Save] button below is pressed. - 8. Восстановить: Сбросить и установить параметр в значение по умолчанию. - 9. **Восстановить по умолчанию**: Сбросить значения всех полей и установить в значения по умолчанию. Данная операция эквивалентна последовательному нажатию кнопок [Восстановить] возле каждого параметра. - 10. Сохранить: Сохранить настройки, не закрывая вкладку Параметры. #### Назначение окна «Внешние приложения» Рис. 19.11: Окно «Внешние приложения» расширения eVis - 1. **Таблица сопоставления**: Таблица содержит типы файлов, которые можно открыть, используя eVis. Для каждого типа представляется расширение и путь к приложению, позволяющему открыть файл данного типа. Таким образом, появляется возможность открыть практически любой файл, например, видео, звуковую запись или текстовый документ, а не только изображение. - 2. **Добавить новый тип файлов**: Добавить новый тип файлов с уникальным расширением и путь до приложения, которое его откроет. - 3. Удалить текущую строку: Удалить из таблицы выбранный тип файлов. #### 19.6.2 Определение местоположения и названия фотографий The location and name of the photograph can be stored using an absolute or relative path, or a URL if the photograph is available on a web server. Examples of the different approaches are listed in Table evis examples. | X | Y | FILE | BEARING | |--------|---------|------------------------------------------------------------|---------| | 780596 | 1784017 | <pre>C:\Workshop\eVis_Data\groundphotos\DSC_0168.JPG</pre> | 275 | | 780596 | 1784017 | /groundphotos/DSC_0169.JPG | 80 | | 780819 | 1784015 | http://biodiversityinformatics.amnh.org/ | | | | | evis_testdata/DSC_0170.JPG | 10 | | 780596 | 1784017 | pdf:http://www.testsite.com/attachments.php? | | | | | attachment id-12 | 76 | # 19.6.3 Определение местоположения и названия прочих документов поддерживаемых форматов Supporting documents such as text documents, videos, and sound clips can also be displayed or played by eVis. To do this, it is necessary to add an entry in the file reference table that can be accessed from the Configure External Applications window in the Generic Event Browser that matches the file extension to an application that can be used to open the file. It is also necessary to have the path or URL to the file in the attribute table for the vector layer. One additional rule that can be used for URLs that don't contain a file extension for the document you want to open is to specify the file extension before the URL. The format is — file extension: URL. The URL is preceded by the file extension and a colon; this is particularly useful for accessing documents from wikis and other web sites that use a database to manage the web pages (see Table evis_examples). #### 19.6.4 Обозреватель событий When the *Event Browser* window opens, a photograph will appear in the display window if the document referenced in the vector file attribute table is an image and if the file location information in the *Options* window is properly set. If a photograph is expected and it does not appear, it will be necessary to adjust the parameters in the *Options* window. If a supporting document (or an image that does not have a file extension recognized by eVis) is referenced in the attribute table, the field containing the file path will be highlighted in green in the attribute information window if that file extension is defined in the file reference table located in the Configure External Applications window. To open the document, double-click on the green-highlighted line in the attribute information window. If a supporting document is referenced in the attribute information window and the file path is not highlighted in green, then it will be necessary to add an entry for the file's filename extension in the Configure External Applications window. If the file path is highlighted in green but does not open when double-clicked, it will be necessary to adjust the parameters in the Options window so the file can be located by eVis. If no compass bearing is provided in the *Options* window, a red asterisk will be displayed on top of the vector feature that is associated with the photograph being displayed. If a compass bearing is provided, then an arrow will appear pointing in the direction indicated by the value in the compass bearing display field in the *Event Browser* window. The arrow will be centered over the point that is associated with the photograph or other document. To close the *Event Browser* window, click on the [Close] button from the *Display* window. #### 19.6.5 Определить события eVis The 'Event ID' module allows you to display a photograph by clicking on a feature displayed in the QGIS map window. The vector feature must have attribute information associated with it to describe the location and name of the file containing the photograph and, optionally, the compass direction the 19.6. Модуль eVis 257 camera was pointed when the image was acquired. This layer must be loaded into QGIS before running the 'Event ID' tool. #### Запуск модуля «Определить события» To launch the 'Event ID' module, either click on the $\bowtie$ Event ID icon or click on $Database \rightarrow eVis \rightarrow Event ID Tool$ . This will cause the cursor to change to an arrow with an 'i' on top of it signifying that the ID tool is active. Для просмотра фотографий, связанных с объектами активного векторного слоя, открытого в QGIS, поместите курсор на объект и щёлкните мышкой. После щелчка на объекте откроется окно Обозреватель событий и фотография, доступная для отображения в обозревателе, на месте щелчка или около него. Если доступно несколько фотографий, то для перемещения между различными объектами используйте кнопки [Предыдущее] и [Следующее]. Остальные управляющие элементы описаны в разделе Обозреватель событий данного руководства. #### 19.6.6 Соединение с БД Модуль «Соединение с БД» представляет собой инструмент для соединения и запросов к базам данных или иным ресурсам ODBC, таким, как электронные таблицы. eVis can directly connect to the following types of databases: PostgreSQL, MySQL, and SQLite; it can also read from ODBC connections (e.g., MS Access). When reading from an ODBC database (such as an Excel spreadsheet), it is necessary to configure your ODBC driver for the operating system you are using. #### Загрузка модуля «Соединение с БД» To launch the 'Database Connection' module, either click on the appropriate icon $e^{\text{Vis Database Connection}}$ or click on $Database \rightarrow eVis \rightarrow Database$ Connection. This will launch the Database Connection window. The window has three tabs: Predefined Queries, Database Connection, and SQL Query. The Output Console window at the bottom of the window displays the status of actions initiated by the different sections of this module. #### Соединение с БД Click on the *Database Connection* tab to open the database connection interface. Next, use the *Database Type* combo box to select the type of database that you want to connect to. If a password or username is required, that information can be entered in the *Username* and *Password* textboxes. Enter the database host in the *Database Host* textbox. This option is not available if you selected 'MS Access' as the database type. If the database resides on your desktop, you should enter "localhost". В поле *База данных* укажите имя базы данных. Если выбран тип «ODBC», то укажите здесь имя источника данных. When all of the parameters are filled in, click on the [Connect] button. If the connection is successful, a message will be written in the *Output Console* window stating that the connection was established. If a connection was not established, you will need to check that the correct parameters were entered above. - 1. Database Type: A drop-down list to specify the type of database that will be used. - 2. Сервер БД: Адрес сервера баз данных. - 3. Port: The port number if a MySQL or PostgreSQL database type is selected. - 4. **Database Name**: The name of the database. - 5. Connect: A button to connect to the database using the parameters defined above. Рис. 19.12: Окно «Соединение с БД» расширения eVis - 6. Output Console: The console window where messages related to processing are displayed. - 7. **Пользователь**: Имя пользователя, указываемое в случае защиты доступа к базе данных паролем. - 8. Пароль: Пароль, соответствующий имени пользователя. - 9. Предопределённые запросы: Вкладка Предопределённые запросы. - 10. Соединение с БД: Вкладка Соединение с БД. - 11. **SQL-запрос**: Вкладка *SQL-запрос*. - 12. **Help**: Displays the online help. - 13. **ОК**: Закрыть главное окно Соединение с БД. #### Выполнение SQL-запросов SQL queries are used to extract information from a database or ODBC resource. In eVis, the output from these queries is a vector layer added to the QGIS map window. Click on the SQL Query tab to display the SQL query interface. SQL commands can be entered in this text window. A helpful tutorial on SQL commands is available at <a href="http://www.w3schools.com/sql">http://www.w3schools.com/sql</a>. For example, to extract all of the data from a worksheet in an Excel file, select * from [sheet1\$] where sheet1 is the name of the worksheet. Click on the [Run Query] button to execute the command. If the query is successful, a *Database File Selection* window will be displayed. If the query is not successful, an error message will appear in the *Output Console* window. В окне Bыбор файла BД в поле Имя нового слоя введите имя слоя, который будет создан на основе результатов выборки. 1. **Текстовое поле «SQL-запрос»**: Место ввода SQL-запросов. 19.6. Модуль eVis 259 Рис. 19.13: Вкладка «SQL-запрос» расширения eVis - 2. **Выполнить**: Кнопка выполнения SQL-запросов. - 3. **Консоль вывода**: Консольное окно, в котором
отображаются сообщения, связанные с работой модуля. - 4. **Help**: Displays the online help. - 5. ОК: Закрыть главное окно Соединение с БД. Use the X Coordinate and Y Coordinate combo boxes to select the fields from the database that stores the X (or longitude) and Y (or latitude) coordinates. Clicking on the [OK] button causes the vector layer created from the SQL query to be displayed in the QGIS map window. To save this vector file for future use, you can use the QGIS 'Save as...' command that is accessed by right-clicking on the layer name in the QGIS map legend and then selecting 'Save as...' #### Совет: Создание векторного слоя на основе данных листа Microsoft Excel When creating a vector layer from a Microsoft Excel Worksheet, you might see that unwanted zeros ("0") have been inserted in the attribute table rows beneath valid data. This can be caused by deleting the values for these cells in Excel using the Backspace key. To correct this problem, you need to open the Excel file (you'll need to close QGIS if you are connected to the file, to allow you to edit the file) and then use $Edit \rightarrow Delete$ to remove the blank rows from the file. To avoid this problem, you can simply delete several rows in the Excel Worksheet using $Edit \rightarrow Delete$ before saving the file. #### Запуск предопределённых запросов With predefined queries, you can select previously written queries stored in XML format in a file. This is particularly helpful if you are not familiar with SQL commands. Click on the *Predefined Queries* tab to display the predefined query interface. To load a set of predefined queries, click on the Open File icon. This opens the Open File window, which is used to locate the file containing the SQL queries. When the queries are loaded, their titles as defined in the XML file will appear in the drop-down menu located just below the Open File icon. The full description of the query is displayed in the text window under the drop-down menu. Select the query you want to run from the drop-down menu and then click on the SQL Query tab to see that the query has been loaded into the query window. If it is the first time you are running a predefined query or are switching databases, you need to be sure to connect to the database. Click on the [Run Query] button in the SQL Query tab to execute the command. If the query is successful, a Database File Selection window will be displayed. If the query is not successful, an error message will appear in the Output Console window. Рис. 19.14: The eVis Predefined Queries tab - 1. **Открыть файл**: Вызов окна *Открыть файл* для поиска XML-файла, содержащего предопределённые запросы. - 2. **Predefined Queries**: A drop-down list with all of the queries defined by the predefined queries XML file. - 3. Описание запроса: Короткое описание запроса, берётся из ХМL-файла. - 4. **Консоль вывода**: Консольное окно, в котором отображаются сообщения, связанные с работой модуля. - 5. **Help**: Displays the online help. - 6. ОК: Закрыть главное окно Соединение с БД. #### XML-формат предопределённых запросов eVis XML-теги eVis 19.6. Модуль eVis 261 | Тег | Описание | | | |------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--| | query | Определяет начало и конец запроса. | | | | shortdescrip | shortdescriptianshort description of the query that appears in the eVis drop-down menu. | | | | description | Более детальное описание запроса, отображается в текстовом поле вкладки | | | | | Предопределённые запросы. | | | | databasetyp | eThe database type, defined in the Database Type drop-down menu in the Database | | | | | Connection tab. | | | | databasepor | tThe port as defined in the Port text box in the Database Connection tab. | | | | databasenai | nThe database name as defined in the Database Name text box in the Database | | | | | Connection tab. | | | | databaseuse | rfamedatabase username as defined in the Username text box in the Database | | | | | Connection tab. | | | | databasepass Wound database password as defined in the Password text box in the Database | | | | | | Connection tab. | | | | sqlstatemen | sqlstatement SQL-запрос. | | | | autoconnect | oconnect A flag ("true" or "false") to specify if the above tags should be used to automatically | | | | | connect to the database without running the database connection routine in the | | | | | Database Connection tab. | | | Пример ХМL-файла, содержащего три запроса: ``` <?xml version="1.0"?> <doc> <query> <shortdescription>Import all photograph points</shortdescription> <description>This command will import all of the data in the SQLite database to QGIS </description> <databasetype>SQLITE</databasetype> <databasehost /> <databaseport /> <databasename>C:\textbackslash Workshop/textbackslash eVis_Data\textbackslash PhotoPoints.db</databasename> <databaseusername /> <databasepassword /> <sqlstatement>SELECT Attributes.*, Points.x, Points.y FROM Attributes LEFT JOIN Points ON Points.rec_id=Attributes.point_ID</sqlstatement> <autoconnect>false</autoconnect> </query> <query> <shortdescription>Import photograph points "looking across Valley"</shortdescription> <description>This command will import only points that have photographs "looking across a valley" to QGIS</description> <databasetype>SQLITE</databasetype> <databasehost /> <databaseport /> <databasename>C:\Workshop\eVis_Data\PhotoPoints.db</databasename> <databaseusername /> <databasepassword /> <sqlstatement>SELECT Attributes.*, Points.x, Points.y FROM Attributes LEFT JOIN Points ON Points.rec_id=Attributes.point_ID where COMMENTS='Looking across valley'</sqlstatement> <autoconnect>false</autoconnect> </query> <query> <shortdescription>Import photograph points that mention "limestone"</shortdescription> <description>This command will import only points that have photographs that mention "limestone" to QGIS</description> <databasetype>SQLITE</databasetype> <databasehost /> <databaseport /> <databasename>C:\Workshop\eVis_Data\PhotoPoints.db</databasename> <databaseusername /> ``` # 19.7 Модуль fTools The goal of the fTools Python plugin is to provide a one-stop resource for many common vector-based GIS tasks, without the need for additional software, libraries, or complex work-arounds. It provides a growing suite of spatial data management and analysis functions that are both fast and functional. fTools is now automatically installed and enabled in new versions of QGIS, and as with all plugins, it can be disabled and enabled using the Plugin Manager (see *The Plugins Menus*). When enabled, the fTools plugin adds a *Vector* menu to QGIS, providing functions ranging from Analysis and Research Tools to Geometry and Geoprocessing Tools, as well as several useful Data Management Tools. #### 19.7.1 Инструменты анализа | Икон | - Инструмент | Назначение | |----------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ка | | | | | Distance<br>matrix | Измеряет расстояние между точками двух точечных слоёв и выдает результат в виде а) квадратной матрицы расстояний, b) линейной матрицы расстояний, или с) суммы расстояний. Можно ограничить расчет только для k ближайших точек. | | | Сумма<br>расстояний в<br>полигонах | Рассчитывает сумму расстояний для линий линейного слоя в пределах каждого полигона другого (векторного полигонального) слоя. | | <u> </u> | Количество<br>точек в<br>полигонах | Рассчитывает число точек точечного слоя, которые находятся в пределах каждого полигона другого (векторного полигонального) слоя. | | | Список<br>уникальных<br>значений | List all unique values in an input vector layer field. | | | Basic statistics | Рассчитывает основные статистики (среднее, стандартное отклонение, количество, сумму, коэффициент вариации) для указанного поля. | | | Nearest<br>neighbor<br>analysis | Compute nearest neighbor statistics to assess the level of clustering in a point vector layer. | | £.0 | Средние<br>координаты | Рассчитывает среднеарифметические или средневзвешенные координаты центра для целого векторного слоя или для набора объектов, выбранного на основе уникальные значения из указанного поля. | | × | Пересечения<br>линий | Рассчитывает местонахождения пересечений линий, создавая точечный шейп-файл с точками пересечений. Полезен для определения мест пересечений дорог или водотоков. Игнорирует пересечения линий с длинной > 0. | 19.7. Модуль fTools 263 Таблица Ftools 1: Инструменты анализа fTools # 19.7.2 Инструменты выборки | Икон | - Инструмент | Назначение | |----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | ка | | | | 2 | Случайная<br>выборка | Randomly select n number of features, or n percentage of features. | | 7 | Случайная<br>выборка в<br>подмножествах | Случайно выбирает набор объектов с уникальными значением указанного поля. | | \$3 | Случайные точки | Создает псевдо-случайные точки в пределах границ указанного слоя. | | | Регулярные<br>точки | Создаёт регулярную сетку точек в пределах указаной области и экспортирует их в точечный шейп-файл. | | # | Векторная сетка | Generate a line or polygon grid based on user-specified grid spacing. | | <b>~</b> | Выделение по<br>районам | Выделяет объекты на основе их положения относительно другого слоя, создавая новую выборку или добавляя/отнимая к/от текущей выборки. | | * | Полигон из<br>границ слоя | Создаёт полигональный слой с единственным прямоугольным полигоном в соответствии с границами исходного растрового или векторного слоя. | Таблица Ftools 2: Инструменты выборки fTools # 19.7.3 Инструменты геопроцессинга | |
- Инструмент | Назначение | |----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| | ка | | | | | Выпуклые<br>оболочки | Создает минимально возможные выпуклые оболочки, или выпуклые оболочки на основе указанного поля. | | | Буферные<br>зоны | Создает буферные зоны вокруг объектов заданного пользователем размера, или используя размер из значений указанного поля. | | 9 | Пересечение | Совмещает слои таким образом, что в выходном слое содержатся только участки, в которых оба слоя пересекаются. | | | Объединение | Совмещает слои таким образом, что в выходном слое содержатся как участки пересечения, так и участки, принадлежащие только одному из слоев. | | | Симметричная<br>разность | Совмещает слои таким образом, что в выходном слое содержатся только те участки, в которых исходные слои не пересекаются. | | | Отсечение | Совмещает слои таким образом, что в выходном слое содержатся только те участки, которые пересекаются со слоем отсечения. | | | Разность | Совмещает слои таким образом, что в выходном слое содержатся только те участки, которые не пересекаются со слоем отсечения. | | | Объединение<br>по признаку | Объединяет объекты на основе значения указанного поля. Все объекты с одинаковым значением поля будут объединены в один объект. | | | Удалить<br>осколочные<br>полигоны | Объединяет выделенные объекты с соседним полигоном, площадь или длина общей границы которого наибольшая. | Таблица Ftools 3: Инструменты геопроцессинга fTools 19.7. Модуль fTools 265 # 19.7.4 Инструменты обработки геометрии | Икон | - Инструмент | Назначение | |------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------| | ка | | | | ~₩ | Проверка<br>геометрии | Check polygons for intersections, closed holes, and fix node ordering. | | / · | Экспортировать / добавить поле геометрии | Добавляет к слою поле(я) с информацией о геометрии:<br>(XCOORD, YCOORD) для точечного слоя, (LENGTH) для<br>линейного и (AREA, PERIMETER) для полигонального. | | (B) | Центроиды<br>полигонов | Вычисляет истинные центроиды для каждого полигона исходного полигонального слоя. | | 010 | Триангуляция<br>Делоне<br>Voronoi polygons | Calculate and output (as polygons) the Delaunay triangulation of an input point vector layer. Calculate Voronoi polygons of an input point vector layer. | | <b>\</b> | Упростить<br>геометрию<br>Добавить вершины | Упрощает линии или полигоны при помощи модифицированного<br>алгоритма Дугласа – Пойкера.<br>Densify lines or polygons by adding vertices. | | 8 | Разбить составные<br>объекты | Преобразует составные объекты (мульти-полигоны или мульти-полилинии) в несколько простых объектов (полигонов или полилиний). | | 8 | Объединить<br>объекты в<br>составные | Объединяет несколько простых объектов в один составной на основе значения указанного поля. | | $\bigcirc$ | Преобразовать<br>полигоны в линии | Преобразует полигоны в линии, составные полигоны преобразует<br>в несколько простых полилиний. | | $\bigcirc$ | Преобразовать<br>линии в полигоны | Преобразует линии в полигоны, составные линии преобразует в несколько простых полигонов. | | <b>~</b> | Извлечение узлов | Извлекает узлы из линий или полигонов, создавая точечный шейп-файл. | Таблица Ftools 4: Инструменты обработки геометрии fTools **Примечание:** The $Simplify\ geometry\ tool\ can$ be used to remove duplicate nodes in line and polygon geometries. Just set the $Simplify\ tolerance$ parameter to 0 and this will do the trick. #### 19.7.5 Инструменты управления данными | Икон | - Инструмент | Назначение | |-------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ка | | | | Œ. | Задать текущую проекцию | Задает проекцию для шейп-файла, если ранее она не была задана. | | | Объединение<br>атрибутов по<br>районам | Присоединяет дополнительные атрибуты к векторному слою на основе пространственного взаимного расположения. Атрибуты из одного векторного слоя присоединяются к атрибутивной таблице другого векторного слоя и экспортируются в шейп-файл. | | 1. C. | Разбить<br>векторный слой | Делит векторный слой на несколько отдельных слоев на основе<br>значения указанного поля. | | | Объединение<br>shape-файлов | Объединяет несколько шейп-файлов, находящихся в одной директории, в новый шейп-файл, основываясь на типе слоя (точечный, линейный, полигональный). | | | Создать про-<br>странственный<br>индекс | Create a spatial index for OGR- supported formats. | Таблица Ftools 5: Инструменты управления данными fTools ### . # 19.8 Модуль GDAL Tools #### 19.8.1 What is GDAL Tools? The GDAL Tools plugin offers a GUI to the collection of tools in the Geospatial Data Abstraction Library, http://gdal.osgeo.org. These are raster management tools to query, re-project, warp and merge a wide variety of raster formats. Also included are tools to create a contour (vector) layer, or a shaded relief from a raster DEM, and to make a VRT (Virtual Raster Tile in XML format) from a collection of one or more raster files. These tools are available when the plugin is installed and activated. #### Библиотека GDAL Библиотека GDAL состоит из набора программ, работающих из командной строки, каждая с большим набором опций. Пользователи, которым комфортно работать в командной строке, могут предпочесть её, в том числе из-за полного набора опций. Модуль «GDAL Tools» обеспечивает простой интерфейс к этим утилитам, но с ограниченным набором наиболее востребованных опций. Рис. 19.15: Меню GDALTools #### 19.8.2 Список инструментов GDAL Tools #### Проекции #### Преобразование *Растеризация* This program burns vector geometries (points, lines and polygons) into the raster band(s) of a raster image. Vectors are read from OGR-supported vector formats. Note that the vector data must in the same coordinate system as the raster data; on the fly reprojection is not provided. For more information see <a href="http://www.gdal.org/gdal">http://www.gdal.org/gdal</a> rasterize.html. This utility creates vector polygons for all connected regions of pixels in the raster sharing a common pixel value. Each polygon is created with an attribute indicating the pixel value of that polygon. The utility will create the output vector datasource if it does not already exist, defaulting to ESRI shapefile format. See also <a href="http://www.gdal.org/gdal_polygonize.html">http://www.gdal.org/gdal_polygonize.html</a>. This utility can be used to convert raster data between different formats, potentially performing some operations like subsetting, resampling, and rescaling pixels in the process. For more information you can read on <a href="http://www.gdal.org/gdal">http://www.gdal.org/gdal</a> translate.html. This utility will compute an optimal pseudocolor table for a given RGB image using a median cut algorithm on a downsampled RGB histogram. Then it converts the image into a pseudocolored image using the color table. This conversion utilizes Floyd-Steinberg dithering (error diffusion) to maximize output image visual quality. The utility is also described at <a href="https://www.gdal.org/rgb2pct.html">https://www.gdal.org/rgb2pct.html</a>. This utility will convert a pseudocolor band on the input file into an output RGB file of the desired format. For more information, see http://www.gdal.org/pct2rgb.html. #### Извлечение This program generates a vector contour file from the input raster elevation model (DEM). On $http://www.gdal.org/gdal_contour.html$ , you can find more information. Обрезка This utility allows you to clip (extract subset) rasters using selected extent or based on mask layer bounds. More information can be found at http://www.gdal.org/gdal_translate.html. #### Анализ This utility removes raster polygons smaller than a provided threshold size (in pixels) and replaces them with the pixel value of the largest neighbor polygon. The result can be written back to the existing raster band, or copied into a new file. For more information, see http://www.gdal.org/gdal_sieve.html. This utility will scan an image and try to set all pixels that are nearly black (or nearly white) around the edge to exactly black (or white). This is often used to "fix up" lossy compressed aerial photos so that color pixels can be treated as transparent when mosaicing. See also http://www.gdal.org/nearblack.html. This utility fills selected raster regions (usually nodata areas) by interpolation from valid pixels around the edges of the areas. On Заполнить пустоты http://www.gdal.org/gdal fillnodata.html, you can find more information. $N \supset Kapma$ близости This utility generates a raster proximity map indicating the distance from the center of each pixel to the center of the nearest pixel identified as a target pixel. Target pixels are those in the source raster for which the raster pixel value is in the set of target pixel values. For more information see http://www.gdal.org/gdal proximity.html. This utility creates a regular grid (raster) from the scattered data read from the OGR datasource. Input data will be interpolated to fill grid nodes with values, and you can choose from various interpolation methods. The utility is also described on the GDAL website, http://www.gdal.org/gdal_grid.html. Tools to analyze and visualize DEMs. It can create a shaded relief, a slope, an aspect, a color relief, a Terrain Ruggedness Index, a Topographic Position Index and a roughness map from any GDAL-supported elevation raster. For more information, see http://www.gdal.org/gdaldem.html. #### Прочее This program builds a VRT (Virtual Dataset) that is a mosaic of the list of
input GDAL datasets. See also http://www.gdal.org/gdalbuildvrt.html. 🚣 Объединение This utility will automatically mosaic a set of images. All the images must be in the same coordinate system and have a matching number of bands, but they may be overlapping, and at different resolutions. In areas of overlap, the last image will be copied over earlier ones. The utility is also described at http://www.gdal.org/gdal merge.html. 👅 Информация This utility lists various information about a GDAL-supported raster dataset. On http://www.gdal.org/gdalinfo.html, you can find more information. The gdaladdo utility can be used to build or rebuild overview images for most supported file formats with one of several downsampling algorithms. For more information, see http://www.gdal.org/gdaladdo.html. This utility builds a shapefile with a record for each input raster file, an attribute containing the filename, and a polygon geometry outlining the raster. See also http://www.gdal.org/gdaltindex.html. #### **GDAL Tools Settings** Use this dialog to embed your GDAL variables. . # 19.9 Модуль привязки растров The Georeferencer Plugin is a tool for generating world files for rasters. It allows you to reference rasters to geographic or projected coordinate systems by creating a new GeoTiff or by adding a world file to the existing image. The basic approach to georeferencing a raster is to locate points on the raster for which you can accurately determine coordinates. #### Кнопки панели инструментов модуля | Икон- | Назначение | Икон- | Назначение | |-------------|-----------------------------------------|---------------------|-------------------------------------------| | ка | | ка | | | | | | | | • | Открыть растр | | Начать привязку | | | Создать сценарий GDAL | 1 | Загрузить контрольные точки | | | Сохранить контрольные точки как | | Параметры трансформации | | <b>&gt;</b> | Добавить точку | × | Удалить точку | | | Переместить точку | $\ell_{\mathrm{L}}$ | Прокрутка | | $\bigcirc$ | Увеличить | $\wp$ | Уменьшить | | $\wp$ | Увеличить до слоя | $\mathcal{A}$ | Предыдущий охват | | P | Следующий охват | <b>***</b> | Связать модуль привязки растров с<br>QGIS | | <b>*</b> | Связать QGIS с модулем привязки растров | | Full histogram stretch | | | Local histogram stretch | | | Таблица Georeferencer 1: Инструменты привязки растров #### 19.9.1 Стандартная процедура As X and Y coordinates (DMS (dd mm ss.ss), DD (dd.dd) or projected coordinates (mmmm.mm)), which correspond with the selected point on the image, two alternative procedures can be used: - The raster itself sometimes provides crosses with coordinates "written" on the image. In this case, you can enter the coordinates manually. - Using already georeferenced layers. This can be either vector or raster data that contain the same objects/features that you have on the image that you want to georeference and with the projection that you want for your image. In this case, you can enter the coordinates by clicking on the reference dataset loaded in the QGIS map canvas. Стандартная процедура привязки растровых изображений подразумевает выбор множественных точек на растре, обозначение их координат или выбор соответствующего типа преобразования. Исходя из введённых параметров и данных, модуль вычислит параметры файла привязки. Чем больше координат будет введено, тем точнее будет результат. The first step is to start QGIS, load the Georeferencer Plugin (see *The Plugins Menus*) and click on $Raster \rightarrow Georeferencer$ , which appears in the QGIS menu bar. The Georeferencer Plugin dialog appears as shown in figure georeferencer 1. Для этого примера мы будем использовать топографическую карту участка штата Южной Дакоты (США), взятую с сайта Геологического Комитета Южной Дакоты. Позже она может быть показана вместе с данными области GRASS spearfish60. Карту можно загрузить отсюда: http://grass.osgeo.org/sampledata/spearfish toposheet.tar.gz. Рис. 19.16: Модуль привязки растров 🔕 #### Ввод контрольных точек - 1. To start georeferencing an unreferenced raster, we must load it using the button. The raster will show up in the main working area of the dialog. Once the raster is loaded, we can start to enter reference points. - 2. "Используя кнопку ^{Добавить точку}, следует добавить точки в основном рабочем окне и ввести их координаты (см. рисунок figure_georeferencer_2). Данную операцию можно проделать тремя путями: - Щелкнуть мышью по точке на растровом изображении и ввести координаты X и Y вручную. - Click on a point in the raster image and choose the From map canvas button to add the X and Y coordinates with the help of a georeferenced map already loaded in the QGIS map canvas. - Используя кнопку Переместить точку, можно перемещать созданные точки, если они расположенные не там, где нужно. - 3. Continue entering points. You should have at least four points, and the more coordinates you can provide, the better the result will be. There are additional tools on the plugin dialog to zoom and pan the working area in order to locate a relevant set of GCP points. Рис. 19.17: Добавление точек на растр 🚨 Точки, добавленные на карту, сохраняются в отдельный текстовый файл ([имя файла].points), обычно в одном каталоге с растровым изображением. Это дает возможность повторно загрузить модуль привязки растров позже и добавить новые точки или удалить существующие для получения лучшего результата. Файл с точками содержит значения в формате: mapX, mapY, pixelX, pixelY. Можно использовать кнопки загрузить контрольные точки и сохранить котрольные точки для изменения этих файлов. #### Определение параметров трансформации После того, как контрольные точки добавлены на растровое изображение, необходимо определить параметры преобразования для привязки. Рис. 19.18: Определение параметров трансформации модуля привязки 🚨 #### Доступные алгоритмы преобразования Depending on how many ground control points you have captured, you may want to use different transformation algorithms. Choice of transformation algorithm is also dependent on the type and quality of input data and the amount of geometric distortion that you are willing to introduce to the final result. Currently, the following Transformation types are available: - The **Linear** algorithm is used to create a world file and is different from the other algorithms, as it does not actually transform the raster. This algorithm likely won't be sufficient if you are dealing with scanned material. - **Трансформация Хельмерта** совершает простые трансформации с изменением масштаба и вращением. - The **Polynomial** algorithms 1-3 are among the most widely used algorithms introduced to match source and destination ground control points. The most widely used polynomial algorithm is the second-order polynomial transformation, which allows some curvature. First-order polynomial transformation (affine) preserves colliniarity and allows scaling, translation and rotation only. - **Алгоритм тонкостенного сплайна** более современный метод привязки, дающий возможность ввода в данные местных деформаций. Данный алгоритм очень полезен, когда необходимо привязать растры с низким качеством изображения. - Проективная трансформация линейное вращение и сдвиг растра. #### Определение метода пересчёта Выбранный тип пересчёта будет, скорее всего, зависеть от исходных данных и конкретной цели операции. Если вы не желаете менять совокупную информацию изображения, вам, возможно, подойдет метод «ближайший сосед», тогда как «кубический» пересчет приведет к более сглаженному результату. It is possible to choose between five different resampling methods: - 1. Ближайший сосед - 2. Линейный - 3. Кубический - 4. Кубический сплайн - 5. Ланцоша #### Установка параметров трансформации Существует несколько параметров, которые необходимо задать для получения привязанного растра. - The Create world file checkbox is only available if you decide to use the linear transformation type, because this means that the raster image actually won't be transformed. In this case, the Output raster field is not activated, because only a new world file will be created. - For all other transformation types, you have to define an *Output raster*. As default, a new file ([filename] modified) will be created in the same folder together with the original raster image. - As a next step, you have to define the *Target SRS* (Spatial Reference System) for the georeferenced raster (see *Работа с проекциями*). - If you like, you can **generate a pdf map** and also **a pdf report**. The report includes information about the used transformation parameters, an image of the residuals and a list with all GCPs and their RMS errors. - Furthermore, you can activate the Set Target Resolution checkbox and define the pixel resolution of the output raster. Default horizontal and vertical resolution is 1. - The Websites Use 0 for transparency when needed can be activated, if pixels with the value 0 shall be visualized transparent. In our example toposheet, all white areas would be transparent. • Finally, Load in QGIS when done loads the output raster automatically into the QGIS map canvas when the transformation is done. #### Просмотр и изменение свойств растра Выбор пунта Свойства растра в меню Параметры вызовет диалог свойств привязываемого слоя. #### Настройки модуля - You can define whether you want to show GCP coordinates and/or IDs. - As residual units, pixels and map units can be chosen. - For the PDF report, a left and right margin can be defined and you can also set the paper size for the PDF map. - Finally, you can activate to Show Georeferencer window docked. #### Запуск преобразования After all GCPs have been collected and all transformation settings are defined, just press the Start georeferencing button to create the new georeferenced raster. # 19.10 Модуль интерполяции The Interplation plugin can be used to generate a TIN or IDW interpolation of a point vector layer. It is very simple to handle and provides an intuitive
graphical user interface for creating interpolated raster layers (see Figure_interpolation_1). The plugin requires the following parameters to be specified before running: - Input **Vector layers**: Specify the input point vector layer(s) from a list of loaded point layers. If several layers are specified, then data from all layers is used for interpolation. Note: It is possible to insert lines or polygons as constraints for the triangulation, by specifying either "points", "structure lines" or "break lines" in the *Type* combo box. - Interpolation attribute: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attribute column to be used for interpolation or enable the **Interpolation attribute*: Select the attri - Interpolation Method: Select the interpolation method. This can be either 'Triangulated Irregular Network (TIN)' or 'Inverse Distance Weighted (IDW)'. - Number of columns/rows: Specify the number of rows and columns for the output raster file. - Файл вывода: Выберите название для выходного растрового файла. - 🌌 Добавить результат в проект для загрузки результата на в проект. #### 19.10.1 Использование модуля - 1. Запустите QGIS и загрузите точечный векторый слой (к примеру, elevp.csv). - 2. Load the Interpolation plugin in the Plugin Manager (see *The Plugins Menus*) and click on the $Raster \rightarrow Interpolation \rightarrow$ Interpolation , which appears in the QGIS menu bar. The Interpolation plugin dialog appears as shown in Figure interpolation 1. Рис. 19.19: Модуль интерполяции 🕰 - 3. Выберите исходный слой (к примеру, elevp) и колонку (к примеру, ELEV) для интерполяции. - 4. Select an interpolation method (e.g., 'Triangulated Irregular Network (TIN)'), and specify a cell size of 5000 as well as the raster output filename (e.g., elevation_tin). - 5. Нажмите кнопку [**OK**]. # 19.11 Оффлайновое редактирование For data collection, it is a common situation to work with a laptop or a cell phone offline in the field. Upon returning to the network, the changes need to be synchronized with the master datasource (e.g., a PostGIS database). If several persons are working simultaneously on the same datasets, it is difficult to merge the edits by hand, even if people don't change the same features. Модуль 🤝 Оффлайновое редактирование автоматизирует процесс синхронизации, копируя содержимое основного источника данных (обычно, базы PostGIS или WFS-T) в базу SpatiaLite и сохраняя все правки в специальных таблицах. При повторном подключении к основному источнику данных, все правки легко переносятся в основной источник. #### 19.11.1 Работа с модулем - Open some vector layers (e.g., from a PostGIS or WFS-T datasource). - Save it as a project. - The content of the layers is saved to SpatiaLite tables. - Редактируйте слои. - After being connected again, upload the changes using $Database o Offline Editing o ext{ } ext{$ Synchronize. Рис. 19.20: Создание оффлайнового проекта из слоёв PostGIS или WFS # 19.12 Oracle Spatial GeoRaster Plugin In Oracle databases, raster data can be stored in SDO_GEORASTER objects available with the Oracle Spatial extension. In QGIS, the Oracle Spatial GeoRaster plugin is supported by GDAL and depends on Oracle's database product being installed and working on your machine. While Oracle is proprietary software, they provide their software free for development and testing purposes. Here is one simple example of how to load raster images to GeoRaster: #### \$ gdal_translate -of georaster input_file.tif geor:scott/tiger@orcl Эта команда загрузит растр в таблицу GDAL_IMPORT по умолчанию, в качестве столбца под названием RASTER. #### 19.12.1 Управление соединениями Firstly, the Oracle GeoRaster Plugin must be enabled using the Plugin Manager (see *The Plugins Menus*). The first time you load a GeoRaster in QGIS, you must create a connection to the Oracle database that contains the data. To do this, begin by clicking on the Add Oracle GeoRaster Layer toolbar button – this will open the *Select Oracle Spatial GeoRaster* dialog window. Click on [New] to open the dialog window, and specify the connection parameters (See Figure_oracle_raster_1): - Name: Enter a name for the database connection. - Database instance: Enter the name of the database that you will connect to. - Username: Specify your own username that you will use to access the database. • Password: Provide the password associated with your username that is required to access the database. Рис. 19.21: Диалоговое окно «Создать соединение Oracle» Теперь, в диалоговом окне *Выберите Oracle Spatial GeoRaster* (см. рисунок Figure_oracle_raster_2), нужно выбрать подключение из выпадающего списка и использовать кнопку [Подключиться] для установки соединения. Также существует возможность править параметры подключения посредством кнопки [Правка] или использовать кнопку [Удалить] для удаления соединения из списка. #### 19.12.2 Выбор растровых данных Once a connection has been established, the subdatasets window will show the names of all the tables that contain GeoRaster columns in that database in the format of a GDAL subdataset name. Выбрав один из таких наборов данных и нажав кнопку [**OK**], можно выбрать название таблицы. Теперь будет показан другой список подчиненных наборов данных, содержащий названия колонок растровых данных из этой таблицы. Обычно это короткий список, так как большинство пользователей не держит больше 1-2 столбцов в одной таблице. Click on one of the listed subdatasets and then click on [Select] to choose one of the table/column combinations. The dialog will now show all the rows that contain GeoRaster objects. Note that the subdataset list will now show the Raster Data Table and Raster Id pairs. At any time, the selection entry can be edited in order to go directly to a known GeoRaster or to go back to the beginning and select another table name. The selection data entry can also be used to enter a WHERE clause at the end of the identification string (e.g., geor:scott/tiger@orcl,gdal_import,raster,geoid=). See http://www.gdal.org/frmt_georaster.html for more information. #### 19.12.3 Отображение растровых данных Finally, by selecting a GeoRaster from the list of Raster Data Tables and Raster Ids, the raster image will be loaded into QGIS. The Select Oracle Spatial GeoRaster dialog can be closed now and the next time it opens, it will keep the same connection and will show the same previous list of subdatasets, making it very easy to open up another image from the same context. Примечание: GeoRasters that contain pyramids will display much faster, but the pyramids need to be generated outside of QGIS using Oracle PL/SQL or gdaladdo. The following is an example using gdaladdo: Рис. 19.22: Диалоговое окно «Выберите Oracle Spatial GeoRaster» ``` gdaladdo georaster:scott/tiger@orcl,georaster_table,georaster,georid=6 -r nearest 2 4 6 8 16 32 A это пример для PL/SQL: $ sqlplus scott/tiger SQL> DECLARE gr sdo_georaster; BEGIN SELECT image INTO gr FROM cities WHERE id = 1 FOR UPDATE; sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN'); UPDATE cities SET image = gr WHERE id = 1; COMMIT; END; ``` # 19.13 Морфометрический анализ The Raster Terrain Analysis Plugin can be used to calculate the slope, aspect, hillshade, ruggedness index and relief for digital elevation models (DEM). It is very simple to handle and provides an intuitive graphical user interface for creating new raster layers (see Figure_raster_terrain_1). Виды анализа: - **Slope**: Calculates the slope angle for each cell in degrees (based on first- order derivative estimation). - Экспозиция: Экспозиция (начиная с 0 градусов на север, против часовой стрелки). - Hillshade: Creates a shaded map using light and shadow to provide a more three-dimensional appearance for a shaded relief map. - Ruggedness Index: A quantitative measurement of terrain heterogeneity as described by Riley et al. (1999). It is calculated for every location by summarizing the change in elevation within the 3x3 pixel grid. - Relief: Creates a shaded relief map from digital elevation data. Implemented is a method to choose the elevation colors by analysing the frequency distribution. Рис. 19.23: Модуль морфометрического анализа (расчет угла уклонов) #### 19.13.1 Использование модуля - 1. Запустите QGIS и загрузите растр цифровой модели рельефа gtopo30 из демонстрационного набора данных GRASS. - 2. Load the Raster Terrain Analysis plugin in the Plugin Manager (see The Plugins Menus). - 3. Select an analysis method from the menu (e.g., $Raster \rightarrow Terrain\ Analysis \rightarrow Slope$ ). The Slope dialog appears as shown in Figure _raster _terrain _1. - 4. Укажите выходной файл и его формат. - 5. Нажмите **[ОК]**. # 19.14 Модуль «Теплокарта» Модуль «Создание теплокарт» использует ядерную оценку плотности распределения для создания растровой карты плотности
(теплокарты) по исходному точечному векторному слою. Плотность вычисляется по числу точек в определенной области, больше количество точек даёт большее значение плотности. Теплокарты позволяют легко идентифицировать скопления точек и выявлять «горячие» области. #### 19.14.1 Активация модуля First this core plugin needs to be activated using the Plugin Manager (see $load_core_plugin$ ). After activation, the heatmap icon $\stackrel{\bullet}{}$ can be found in the Raster Toolbar, and under the $Raster \rightarrow Heatmap$ menu. Если кнопки не видно, возможно, у вас отключена соответствующая панель инструментов. Включить её можно из меню $Bud \to \Pi anenu \ uncmpy menmos \to Pacmp$ . #### 19.14.2 Использование модуля Clicking the Heatmap tool button opens the Heatmap plugin dialog (see figure_heatmap_2). Для построения теплокарты необходимо задать следующие параметры: - Input point layer: Lists all the vector point layers in the current project and is used to select the layer to be analysed. - Output raster: Allows you to use the ____ button to select the folder and filename for the output raster the Heatmap plugin generates. A file extension is not required. - Output format: Selects the output format. Although all formats supported by GDAL can be choosen, in most cases GeoTIFF is the best format to choose. - Radius: Is used to specify the heatmap search radius (or kernel bandwidth) in meters or map units. The radius specifies the distance around a point at which the influence of the point will be felt. Larger values result in greater smoothing, but smaller values may show finer details and variation in point density. When the $\square$ Advanced checkbox is checked, additional options will be available: - Rows and Columns: Used to change the dimensions of the output raster. These values are also linked to the Cell size X and Cell size Y values. Increasing the number of rows or columns will decrease the cell size and increase the file size of the output file. The values in Rows and Columns are also linked, so doubling the number of rows will automatically double the number of columns and the cell sizes will also be halved. The geographical area of the output raster will remain the same! - Cell size X and Cell size Y: Control the geographic size of each pixel in the output raster. Changing these values will also change the number of Rows and Columns in the output raster. - Функция ядра: задаёт алгоритм по которому рассчитывается знижение влияния точки по мере увеличения расстояния от неё. Разные функции имеют разные коэффициенты уменьшения, поэтому тривесовая функция даёт больший вес на малых расстояниях от точки чем функция Евпанечникова. И как результат, тривесовая функция делает «горячие» точки более четкими, а функция Евпанечникова сглаженными. В QGIS доступны основные функции ядра, описание которых можно найти в Википедии. - **Decay ratio**: Can be used with Triangular kernels to further control how heat from a feature decreases with distance from the feature. - A value of 0 (=minimum) indicates that the heat will be concentrated in the centre of the given radius and completely extinguished at the edge. - Коэффициент равный 0.5 означает, что температура пикселей на краях буферной зоны будет в два раза ниже температуры в центре. - Если указано значение 1, распределение температуры будет равномерным по всей буферной зоне (это равнозначно использованию «Прямоугольной» функции ядра). - A value greater than 1 indicates that the heat is higher towards the edge of the search radius than at the centre. Исходный точечный слой может содержать поля, которые можно использоваться при построении теплокарты: - Use radius from field: Sets the search radius for each feature from an attribute field in the input layer. - Use weight from field: Allows input features to be weighted by an attribute field. This can be used to increase the influence certain features have on the resultant heatmap. Когда все параметры указаны, нажмите кнопку [OK], чтобы запустить процесс создания теплокарты. #### 19.14.3 Пример создания теплокарты For the following example, we will use the airports vector point layer from the QGIS sample dataset (see $\Pi pumepu \ dannux$ ). Another exellent QGIS tutorial on making heatmaps can be found at http://qgis.spatialthoughts.com. In Figure Heatmap 1, the airports of Alaska are shown. Рис. 19.24: Аэропорты Аляски 🚨 - 1. Select the Heatmap tool button to open the Heatmap dialog (see Figure Heatmap 2). - 2. In the *Input point layer* field, select airports from the list of point layers loaded in the current project. - 3. Specify an output filename by clicking the ____ button next to the *Output raster* field. Enter the filename heatmap_airports (no file extension is necessary). - 4. В выпадающем списке Формат вывода выберите GeoTiff. - 5. Установите в поле Paduyc значение 1000000 метров. - 6. Нажмите кнопку **[OK]** чтобы создать и загрузить в QGIS теплокарту (см. рисунок Figure Heatmap 3). QGIS создаст теплокарту и загрузить её в проект. По умолчанию итоговый растр отображается в оттенках серого цвета, светлым областям соответствует болбшая концентрация аэропортов. Чтобы теплокарта была легкочитаемой рекомендуется изменить её стиль отображения. с использованием правильного стиля - 1. Откройте свойства слоя heatmap_airports. Для этого выберите слой в списке слоёв проекта, вызовите контекстное меню по правой клавише мыши и выберите пункт *Свойства*. - 2. Перейдите на вкладку Стиль. - 3. Измените стиль отрисовки в поле *Изображение* с «Одноканальное серое» на «Одноканальное псевдоцветное». Рис. 19.25: Создание теплокарты 🚨 Рис. 19.26: После загрузки теплокарта отображается в оттенках серого 🗘 - 4. Выберите подходящую цветовую карту в группе Cos damb usemosym kapmy, например «YlOrRed». - 5. Нажмите кнопку [Загрузить]**в группе :guilabel: Значения мин/макс для получения минимального и максимального значений растра. Затем нажмите кнопку **[Классифицировать] в группе Создать цветовую карту. - 6. Нажмите кнопку [ОК] чтобы закрыть окно и применить настройки отображения растра. Конечный результат показан на рисунке Figure Heatmap 4. Рис. 19.27: Итоговая теплокарта аэропортов Аляски 🗘 ## 19.15 Модуль «Road Graph» The Road Graph Plugin is a C++ plugin for QGIS that calculates the shortest path between two points on any polyline layer and plots this path over the road network. Основные возможности: - Calculates path, as well as length and travel time. - Optimizes by length or by travel time. - Exports path to a vector layer. - Highlights roads directions (this is slow and used mainly for debug purposes and for the settings testing). As a roads layer, you can use any polyline vector layer in any QGIS-supported format. Two lines with a common point are considered connected. Please note, it is required to use layer CRS as project CRS while editing a roads layer. This is due to the fact that recalculation of the coordinates between different CRSs introduces some errors that can result in discontinuities, even when 'snapping' is used. In the layer attribute table, the following fields can be used: Рис. 19.28: Модуль Road Graph 🔕 - Speed on road section (numeric field). - Direction (any type that can be cast to string). Forward and reverse directions correspond to a one-way road, both directions indicate a two-way road. If some fields don't have any value or do not exist, default values are used. You can change defaults and some plugin settings in the plugin settings dialog. ### 19.15.1 Использование модуля After plugin activation, you will see an additional panel on the left side of the main QGIS window. Now, enter some parameters into the *Road graph plugin settings* dialog in the $Vector \rightarrow Road\ Graph$ menu (see figure road graph 2). After setting the *Time unit*, *Distance unit* and *Topology tolerance*, you can choose the vector layer in the *Transportation layer* tab. Here you can also choose the *Direction field* and *Speed field*. In the *Default settings* tab, you can set the *Direction* for the calculation. Finally, in the *Shortest Path* panel, select a Start and a Stop point in the road network layer and click on [Calculate]. ## 19.16 Модуль «Пространственные запросы» The Spatial Query Plugin allows you to make a spatial query (i.e., select features) in a target layer with reference to another layer. The functionality is based on the GEOS library and depends on the selected source feature layer. 19.16. Модуль «Пространственные запросы» Рис. 19.29: Настройка модуля Road Graph 🚨 Поддерживаются следующие операторы: - Содержит - Совпадает - Накладывается - Пересекает кривой - Пересекает - Не пересекает - Касается - Находится внутри #### 19.16.1 Использование модуля As an example, we want to find regions in the Alaska dataset that contain airports. The following steps are necessary: - 1. Запустите QGIS и загрузите слои regions.shp и airports.shp. - 2. Load the Spatial Query plugin in the Plugin Manager (see *The Plugins Menus*) and click on the Spatial Query icon, which appears in the QGIS toolbar menu. The plugin dialog appears. - 3. Select the layer regions as the source layer and airports as the reference feature layer. - 4. Select 'Contains' as the operator and click [Apply]. Now you get a list of feature IDs from the query and you have several options, as shown in figure_spatial_query_1. - Click on Create layer with list of items. - Select an ID from the list and click on Create layer with selected. - Select 'Remove from current selection' in the field And use the result to • Additionally, you can Zoom to item or display Log messages. Рис. 19.30: Пространственный запрос — области с аэропортами 🚨 ## 19.17 Модуль SPIT QGIS comes with a plugin named SPIT (Shapefile to PostGIS Import Tool). SPIT can be used to load multiple shapefiles at one time and includes support for schemas. To use SPIT, open the Plugin Manager from the Plugins menu, in the $rac{1}{2}$ Installed menu check the box next to the $rac{1}{2}$
SPIT and click [OK]. To import a shapefile, use $Database \to Spit \to Import\ Shapefiles\ to\ PostgreSQL$ from the menu bar to open the SPIT - $Shapefile\ to\ PostGIS\ Import\ Tool$ dialog. Select the PostGIS database you want to connect to and click on [Connect]. If you want, you can define or change some import options. Now you can add one or more files to the queue by clicking on the [Add] button. To process the files, click on the [OK] button. The progress of the import as well as any errors/warnings will be displayed as each shapefile is processed. # 19.18 Модуль «SQL Anywhere» SQL Anywhere is a proprietary relational database management system (RDBMS) from Sybase. SQL Anywhere provides spatial support, including OGC, shapefiles and built-in functions to export to KML, GML and SVG formats. $^{\mathrm{SQL}}$ Anywhere allows you to connect to spatially enabled SQL Anywhere databases. The Add SQL Anywhere layer dialog is similar in functionality to the dialogs for PostGIS and SpatiaLite. . Рис. 19.31: Использование SPIT для импорта shape-файлов в PostGIS 🚨 Рис. 19.32: Окно модуля SQL Anywhere 🕰 #### R Q R EZ EZ EZ EZ F Layers Topology Checker @ **x** group1 Error Layer Feature ID popp 0 gaps regions 0 Topology Rule Settings gaps regions 0 regions 0 2 gaps Current Rules 3 gaps regions 0 gaps regions 0 must be inside alaska airports 5 regions 0 gaps ■ Delete Rule Add Rule regions 0 gaps regions 0 Layer #2 Rule Layer #1 Tolerance regions 0 8 gaps 1 must be inside popp alaska No tolerance regions 0 regions 0 10 gaps 2 must not have gaps No tolerance regions No laver 11 gaps regions 0 3 must not have invalid geometries lakes No tolerance No laver regions 0 12 gaps regions 0 13 gaps 14 gaps regions 0 15 gaps regions 0 regions 0 16 gaps 17 gaps regions 0 18 gaps regions 0 regions 0 19 gaps 20 gaps regions 0 Help Cancel OK 🔣 Validate All Validate Extent majrivers Show errors 81 errors were found Control rendering order Becharof Lake ## 19.19 Модуль «Проверка топологии» Рис. 19.33: Модуль «Проверка топологии» Scale 2206834 EPSG:2964 🚳 🗥 495242,3850406 Topology describes the relationships between points, lines and polygons that represent the features of a geographic region. With the Topology Checker plugin, you can look over your vector files and check the topology with several topology rules. These rules check with spatial relations whether your features 'Equal', 'Contain', 'Cover', are 'CoveredBy', 'Cross', are 'Disjoint', 'Intersect', 'Overlap', 'Touch' or are 'Within' each other. It depends on your individual questions which topology rules you apply to your vector data (e.g., normally you won't accept overshoots in line layers, but if they depict dead-end streets you won't remove them from your vector layer). QGIS has a built-in topological editing feature, which is great for creating new features without errors. But existing data errors and user-induced errors are hard to find. This plugin helps you find such errors through a list of rules. Задавать правила проверки топологии в модуле «Проверка топологии» очень просто. Точечные слои могут проверяться на соответствие следующим правилам: - Must be covered by: Here you can choose a vector layer from your project. Points that aren't covered by the given vector layer occur in the 'Error' field. - Must be covered by endpoints of: Here you can choose a line layer from your project. - Must be inside: Here you can choose a polygon layer from your project. The points must be inside a polygon. Otherwise, QGIS writes an 'Error' for the point. - Must not have duplicates: Whenever a point is represented twice or more, it will occur in the 'Error' field. - Must not have invalid geometries: Checks whether the geometries are valid. Coordinate: - Must not have multi-part-geometries: All multi-part points are written into the 'Error' field. - On **line layers**, the following rules are available: - End points must be covered by: Here you can select a point layer from your project. - Must not have dangles: This will show the overshoots in the line layer. - Must not have duplicates: Whenever a line feature is represented twice or more, it will occur in the 'Error' field. - Must not have invalid geometries: Checks whether the geometries are valid. - Must not have multi-part geometries: Sometimes, a geometry is actually a collection of simple (single-part) geometries. Such a geometry is called multi-part geometry. If it contains just one type of simple geometry, we call it multi-point, multi-linestring or multi-polygon. All multi-part lines are written into the 'Error' field. - Must not have pseudos: A line geometry's endpoint should be connected to the endpoints of two other geometries. If the endpoint is connected to only one other geometry's endpoint, the endpoint is called a psuedo node. On **polygon layers**, the following rules are available: - Must contain: Polygon layer must contain at least one point geometry from the second layer. - Must not have duplicates: Polygons from the same layer must not have identical geometries. Whenever a polygon feature is represented twice or more it will occur in the 'Error' field. - Must not have gaps: Adjacent polygons should not form gaps between them. Administrative boundaries could be mentioned as an example (US state polygons do not have any gaps between them...). - Must not have invalid geometries: Checks whether the geometries are valid. Some of the rules that define a valid geometry are: - границы полигона должны быть замкнуты - границы внутренних полигонов («дырок») должны находиться внутри внешней границы полигона. - внутренние полигоны («дырки») не должны пересекаться или касаться - внутренние полигоны не могут качаться друг друга только в одной точке - Must not have multi-part geometries: Sometimes, a geometry is actually a collection of simple (single-part) geometries. Such a geometry is called multi-part geometry. If it contains just one type of simple geometry, we call it multi-point, multi-linestring or multi-polygon. For example, a country consisting of multiple islands can be represented as a multi-polygon. - Must not overlap: Adjacent polygons should not share common area. - Must not overlap with: Adjacent polygons from one layer should not share common area with polygons from another layer. ## 19.20 Модуль «Зональная статистика» With the Zonal statistics plugin, you can analyze the results of a thematic classification. It allows you to calculate several values of the pixels of a raster layer with the help of a polygonal vector layer (see figure_zonal_statistics). You can calculate the sum, the mean value and the total count of the pixels that are within a polygon. The plugin generates output columns in the vector layer with a user-defined prefix. . Рис. 19.34: Модуль «Зональная статистика» (KDE) $\Delta$ ## Справка и поддержка ## 20.1 Списки рассылки QGIS находится в состоянии активной разработки и поэтому иногда может работать не так, как вы ожидаете. Подписка на рассылку qgis-users является наиболее предпочтительным способом получения помощи. Ваш вопрос будет доступен широкой аудитории, а ответы смогут помочь другим. ### 20.1.1 ggis-users Список рассылки предназначен как для обсуждения QGIS в целом, так и для специфических вопросов, касающихся установки и использования. Подписаться на список рассылки qgis-users можно посетив следующий URL: http://lists.osgeo.org/mailman/listinfo/qgis-user #### 20.1.2 fossgis-talk-liste For the German-speaking audience, the German FOSSGIS e.V. provides the fossgis-talk-liste mailing list. This mailing list is used for discussion of open-source GIS in general, including QGIS. You can subscribe to the fossgis-talk-liste mailing list by visiting the following URL: https://lists.fossgis.de/mailman/listinfo/fossgis-talk-liste ### 20.1.3 qgis-developer Если вы разработчик и сталкиваетесь с проблемами более технического характера, то, возможно, захотите присоединиться к рассылке qgis-developer здесь: http://lists.osgeo.org/mailman/listinfo/qgis-developer ## 20.1.4 qgis-commit Each time a commit is made to the QGIS code repository, an email is posted to this list. If you want to be up-to-date with every change to the current code base, you can subscribe to this list at: http://lists.osgeo.org/mailman/listinfo/qgis-commit ## 20.1.5 qgis-trac Эта рассылка оповещает о событиях, связанных с управлением проектом, в том числе, сообщениях об ошибках, задачах и пожеланиях. Подписаться на рассылку можно по адресу: http://lists.osgeo.org/mailman/listinfo/qgis-trac #### 20.1.6 qgis-community-team This list deals with topics like documentation, context help, user guide, web sites, blog, mailing lists, forums, and translation efforts. If you would like to work on the user guide as well, this list is a good starting point to ask your questions. You can subscribe to this list at: http://lists.osgeo.org/mailman/listinfo/qgis-community-team #### 20.1.7 ggis-release-team This list deals with topics like the release process, packaging binaries for various OSs and announcing new releases to the world at large. You can subscribe to this list at: http://lists.osgeo.org/mailman/listinfo/qgis-release-team ## 20.1.8 qgis-tr Список рассылки посвящённый вопросам перевода. Если вы хотите работать над переводом руководств или интерфейса пользователя (GUI), то все свои вопросы нужно задавать здесь. Подписаться на рассылку можно по адресу: http://lists.osgeo.org/mailman/listinfo/qgis-tr ## 20.1.9 qgis-edu This list deals with QGIS education efforts. If you would like to work on QGIS education materials, this list is a good starting point to ask your questions. You can subscribe to this list at: http://lists.osgeo.org/mailman/listinfo/qgis-edu ### 20.1.10 qgis-psc Список рассылки используется Руководящим комитетом для обсуждения вопросов, связанных с общим управлением и направлением развития QGIS. Подписаться на рассылку можно здесь: http://lists.osgeo.org/mailman/listinfo/qgis-psc You are welcome to subscribe to any of the
lists. Please remember to contribute to the list by answering questions and sharing your experiences. Note that the qgis-commit and qgis-trac lists are designed for notification only and are not meant for user postings. ### 20.2 IRC We also maintain a presence on IRC - visit us by joining the #qgis channel on irc.freenode.net. Please wait for a response to your question, as many folks on the channel are doing other things and it may take a while for them to notice your question. If you missed a discussion on IRC, not a problem! We log all discussion, so you can easily catch up. Just go to http://qgis.org/irclogs and read the IRC-logs. Commercial support for QGIS is also available. Check the website http://qgis.org/en/commercial-support.html for more information. ## 20.3 Багтрекер While the qgis-users mailing list is useful for general 'How do I do XYZ in QGIS?'-type questions, you may wish to notify us about bugs in QGIS. You can submit bug reports using the QGIS bug tracker at <a href="http://hub.qgis.org/projects/quantum-gis/issues">http://hub.qgis.org/projects/quantum-gis/issues</a>. When creating a new ticket for a bug, please provide an email address where we can contact you for additional information. Please bear in mind that your bug may not always enjoy the priority you might hope for (depending on its severity). Some bugs may require significant developer effort to remedy, and the manpower is not always available for this. Предложения по усовершенствованию можно отправлять, используя ту же систему, что и ошибки. Пожалуйста, убедитесь, что для сообщения указан тип Feature. If you have found a bug and fixed it yourself, you can submit this patch also. Again, the lovely redmine ticketsystem at <a href="http://hub.qgis.org/wiki/quantum-gis/issues">http://hub.qgis.org/wiki/quantum-gis/issues</a> has this type as well. Check the Patch supplied checkbox and attach your patch before submitting your bug. One of the developers will review it and apply it to QGIS. Please don't be alarmed if your patch is not applied straight away – developers may be tied up with other commitments. ### 20.4 Блог The QGIS community also runs a weblog at http://planet.qgis.org/planet/, which has some interesting articles for users and developers as well provided by other blogs in the community. You are invited to contribute your own QGIS blog! ## 20.5 Модули The website http://plugins.qgis.org provides the official QGIS plugins web portal. Here, you find a list of all stable and experimental QGIS plugins available via the 'Official QGIS Plugin Repository'. ### 20.6 Wiki Lastly, we maintain a WIKI web site at <a href="http://hub.qgis.org/projects/quantum-gis/wiki">http://hub.qgis.org/projects/quantum-gis/wiki</a> where you can find a variety of useful information relating to QGIS development, release plans, links to download sites, message-translation hints and more. Check it out, there are some goodies inside! . 20.4. Блог 295 ## Приложение ## 21.1 GNU General Public License Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. #### Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. - 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: - (a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. - (b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. - (c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. - 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: - (a) Accompany it with the complete
corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, - (b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, - (c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. - 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. - 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. - 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. - 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. - 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. - 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. - Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. - 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. #### NO WARRANTY - 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. #### QGIS Qt exception for GPL In addition, as a special exception, the QGIS Development Team gives permission to link the code of this program with the Qt library, including but not limited to the following versions (both free and commercial): Qt/Non-commercial Windows, Qt/Windows, Qt/X11, Qt/Mac, and Qt/Embedded (or with modified versions of Qt that use the same license as Qt), and distribute linked combinations including the two. You must obey the GNU General Public License in all respects for all of the code used other than Qt. If you modify this file, you may extend this exception to your version of the file, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. ### 21.2 GNU Free Documentation License Version 1.3, 3 November 2008 Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. #### Preamble The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
#### 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The **Document**, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called **Opaque**. Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. The "publisher" means any person or entity that distributes copies of the Document to the public. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. #### 2. VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. #### 3. COPYING IN QUANTITY If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. #### 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: - 1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. - 2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. - 3. State on the Title page the name of the publisher of the Modified Version, as the publisher. - 4. Preserve all the copyright notices of the Document. - 5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. - 6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below - 7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. - 8. Include an unaltered copy of this License. - 9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. - 10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. - 11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. - 12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. - 13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. - 14. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. - 15. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. #### 5. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". #### 6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. #### 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. #### 8. TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. #### 9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. #### 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See <a href="http://www.gnu.org/copyleft/">http://www.gnu.org/copyleft/</a>. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. #### 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site. "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. "Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document. An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. #### ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with ... Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. . ## Литература и ссылки на web-ресурсы GDAL-SOFTWARE-SUITE. Geospatial data abstraction library. http://www.gdal.org, 2013. $GRASS-PROJECT.\ Geographic\ ressource\ analysis\ support\ system.\ http://grass.osgeo.org\ ,\ 2013.$ NETELER, M., AND MITASOVA, H. Open source gis: A grass gis approach, 2008. $OGR-SOFTWARE-SUITE.\ Geospatial\ data\ abstraction\ library.\ http://www.gdal.org/ogr\ ,\ 2013.$ OPEN-GEOSPATIAL-CONSORTIUM. Web map service (1.1.1) implementation specification. http://portal.opengeospatial.org, 2002. OPEN-GEOSPATIAL-CONSORTIUM. Web map service (1.3.0) implementation specification. http://portal.opengeospatial.org, 2004. POSTGIS-PROJECT. Spatial support for postgresql. http://postgis.refractions.net/, 2013. | %%, 100 | модули, $245$ | |----------------------------------------|----------------------------------------------| | Цветовая карта, 135 | навигация по карте, 107 | | Действия, 100 | непространственные атрибутивные таблицы, 121 | | Дискретная, 135 | нотация Proj.4, 61 | | Импорт слоёв, 65 | новый GPX слой, 116, 117 | | Инструменты анализа, 263 | новый слой SpatiaLite, 116 | | Инструменты выборки, 264 | новый shape-файл, 116 | | Кнопки панели инструментов модуля, 271 | объедининить выделенные объекты, 115 | | Комбинации клавиш, 35 | объединить атрибуты выделенных объектов, 115 | | Контекстная справка, 35 | обновление во время отрисовки, 37 | | Квантили, 84 | общая граница полигонов, 108 | | Обзорная карта, 47 | определение WMS, 148 | | Оцифровка, 109 | отмена отрисовки, 36 | | Определение объектов, 39 | панель инструментов GRASS, 176 | | Порог прилипания, 107 | браузер, 182 | | Просмотр слоёв, 65 | настройка, 183 | | Растр, 131 | панорамирование, 107 | | Разбить объекты, 115 | параметры командной строки, 19 | | Рендеринг, 35 | перемещение клавишами, 34 | | Стиль, 133 | пользовательская система координат, 62 | | Узлы, 111 | порог прилипания, 107 | | Вершина, 111 | повернуть значки, 115 | | Вершины, 111 | прилипать к пересечениям, 109 | | Видимость в пределах масштаба, 36 | проекции, 59 | | аннотации, 42 | прокси, 145 | | документация, 7 | прокси-сервер, 145 | | главное окно, 23 | пространственные закладки | | инструмент редактирования узлов, 110 | см. закладки, 44 | | измерения, 37 | прозрачность слоя WMS, 147 | | длина линии, 37 | работа с атрибутивной таблицей, 117 | | площади, 37 | радиус поиска, 107 | | углы, 37 | расчет масштаба, 34 | | качество отрисовки, 37 | расположение панелей, 31 | | калькулятор полей, 125 | редактирования, 107 | | калькулятор растров, 141 | система координат, 59, 147 | | клиент WMS, 143 | система координат по умолчанию, 59 | | клиент WMTS, 143 | сохранить как изображение, 21 | | конструктор запросов, 124 | создать слой, 116 | | легенда, 31 | свойства WMS, 149 | | макет карты, быстрая печать, 21 | тайлы WMS, 147 | | масштаб, 36 | текущие правки, 110 | | масштабирование мышью, 33 | топологическое редактирование, 108 | | меню, 24 | увеличение уменьшение, 107 | | метаданные WMS, 149 | выборка в атрибутивной таблице, 119 | | модель векторных данных GRASS, 171 | выделение при помощи запроса, 125 | | выведенные поля, 125<br>видимость слоя, 31<br>встроенные проекты, 45<br>загрузка растра, 131<br>закладки, 44 | GML, 143<br>GNU General Public License, 297<br>Gradient_Color_Ramp, 84<br>Graduated_Renderer, 84<br>GRASS, 167, см. создание нового векторного<br>слоя; создание нового слоя | |-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | apache, 152 apache2, 152 Arc/Info_ASCII_Grid, 131 Arc/Info_Binary_Grid, 131 ArcInfo_Binary_Coverage, 70 Atlas Generation, 241 | хранение атрибутов, 172<br>инструменты оцифровки, 172<br>настройки категорий, 173<br>настройки стиля, 174<br>область, 175 | | attribute table, 119 Attribute_Actions, 100 Attribute_Table, 236 | отображение области, 175<br>отображение результатов, 177, 179<br>панель инструментов, 180<br>порог прилипания, 174 | | CAT, 143<br>Categorized_Renderer, 83<br>CGI, 152 | редактирование области, 176 редактирование таблицы, 174 связь атрибутов, 172 | | Colliding_labels, 89 Color_interpolation, 135 Color_Ramp, 84 | Grid Map_Grid, 226 | | Color Brewer, 84<br>Comma Separated Values, 70 | Histogram, 139 HTML_Frame, 238 | | Common_Gateway_Interface, 152<br>Compose_Maps, 219<br>Composer_Manager, 244 | IGNF, 59<br>Institut_Geographique_National_de_France, 59<br>InteProxy, 150 | | Composer_Template, 220<br>Contrast_enhancement, 135<br>Create_Maps, 219 | join, 103<br>join layer, 103 | | crossing the 180 degrees longitude line, 76 CRS, 59, 147 CSV, 70, 111 | Layout_Maps, 219<br>license document, 297<br>load a shapefile, 68 | | Custom_Color_Ramp, 84 | - | | Datum_transformation, 63<br>DB_Manager, 78<br>Debian_Squeeze, 152 | Map_Legend, 230 Map_Template, 220 MapInfo, 70 | | define an action, 100 Displacement_plugin, 87 | merge attributes of features, 115 Metadata, 139 MSSQL Spatial, 78 | | Elements_Alignment, 238<br>EPSG, 59<br>Equal_Interval, 84 | Multi_Band_Raster, 133 multipolygon, 114 Natural_Breaks_(Jenks), 84 | | Erdas Imagine, 131<br>ESRI, 67<br>European_Petroleum_Search_Group, 59 | OGC, 143<br>OGR, 67 | | Export_as_image, 243 Export_as_PDF, 243 Export_as_SVG, 243 | OGR Simple Feature Library, 67<br>ogr2ogr, 75<br>Open Geospatial Consortium, 143 | | FastCGI, 152 Field_Calculator_Functions, 127 | OpenStreetMap, 72 Oracle Spatial, 78 OSM, 72 | | дредотвращение пересечения полигонов, 109<br>GDAL, 131 | pgsql2shp, 75 Picture database, 229 | | GeoTIFF, 131<br>GeoTiff, 131<br>GiST (Generalized Search Tree) index, 76 | Point_Displacement_Renderer, 87 PostGIS, 73 PostGIS spatial index, 76 | ``` PostgreSQL, 73 WKT, 59, 111 Pretty Breaks, 84 WMS, 143 print_composer WMS-C, 147 tools, 219 WMS 1.3.0, 150 Printing WMTS, 147 Export Map, 243 Proj.4, 62 Proj4, 61 Publish_to_Web_plugin, 152 Pyramids, 138 {\bf QGIS_mapserver},\,150 QGIS_Server,\,152 QSpatiaLite, 78 Relations, 121 Renderer Categorized, 83 Renderer Graduated, 84 Renderer Point Displacement, 87 Renderer Single Symbol, 82 Rendering Mode, 223 Rendering_Rule-based, 86 Revert_Layout_Actions, 239 ring polygons, 114 Rotated North Arrow, 229 Rule-based Rendering, 86 Scalebar Map Scalebar, 233 Secured _ OGC _ Authentication, 150 SFS, 143 shape-файл, 67 Shapefile to Postgis Import Tool, 287 shp2pgsql, 75 Single Band Raster, 133 Single Symbol Renderer, 82 SLD, 152 SLD/SE, 152 Spatialite, 77 Spatialite Manager, 78 SPIT, 287 SQLite, 77 SRS, 147 ST Shift Longitude, 76 Symbology, 81 Three Band Color Raster, 133 Tiger Format, 70 Toggle Editing, 109 Transparency, 137 UK National Transfer Format, 70 US Census Bureau, 70 WCS, 143, 151 Web Coverage Service, 151 WFS, 143, 151 WFS-T, 151 WFS Transactional, 151 ```